DOI QR코드

DOI QR Code

Engineering and Application of Zinc Finger Proteins and TALEs for Biomedical Research

  • 투고 : 2017.07.23
  • 심사 : 2017.08.11
  • 발행 : 2017.08.31

초록

Engineered DNA-binding domains provide a powerful technology for numerous biomedical studies due to their ability to recognize specific DNA sequences. Zinc fingers (ZF) are one of the most common DNA-binding domains and have been extensively studied for a variety of applications, such as gene regulation, genome engineering and diagnostics. Another novel DNA-binding domain known as a transcriptional activator-like effector (TALE) has been more recently discovered, which has a previously undescribed DNA-binding mode. Due to their modular architecture and flexibility, TALEs have been rapidly developed into artificial gene targeting reagents. Here, we describe the methods used to design these DNA-binding proteins and their key applications in biomedical research.

키워드

참고문헌

  1. Bae, K.H., Kwon, Y.D., Shin, H.C., Hwang, M.S., Ryu, E.H., Park, K.S., Yang, H.Y., Lee, D.K., Lee, Y., Park, J., et al. (2003). Human zinc fingers as building blocks in the construction of artificial transcription factors. Nat. Biotechnol. 21, 275-280. https://doi.org/10.1038/nbt796
  2. Bailus, B.J., and Segal, D.J. (2014). The prospect of molecular therapy for Angelman syndrome and other monogenic neurologic disorders. BMC Neurosci. 15, 76. https://doi.org/10.1186/1471-2202-15-76
  3. Beerli, R.R., and Barbas, C.F., 3rd (2002). Engineering polydactyl zincfinger transcription factors. Nat. Biotechnol. 20, 135-141. https://doi.org/10.1038/nbt0202-135
  4. Beerli, R.R., Segal, D.J., Dreier, B., and Barbas, C.F., 3rd (1998). Toward controlling gene expression at will: specific regulation of the erbB-2/HER-2 promoter by using polydactyl zinc finger proteins constructed from modular building blocks. Proc. Natl. Acad. Sci. USA 95, 14628-14633. https://doi.org/10.1073/pnas.95.25.14628
  5. Beerli, R.R., Dreier, B., and Barbas, C.F., 3rd (2000). Positive and negative regulation of endogenous genes by designed transcription factors. Proc. Natl. Acad. Sci. USA 97, 1495-1500. https://doi.org/10.1073/pnas.040552697
  6. Bhakta, M.S., and Segal, D.J. (2010). The generation of zinc finger proteins by modular assembly. Methods Mol. Biol. 649, 3-30.
  7. Boch, J., Scholze, H., Schornack, S., Landgraf, A., Hahn, S., Kay, S., Lahaye, T., Nickstadt, A., and Bonas, U. (2009). Breaking the code of DNA binding specificity of TAL-type III effectors. Science 326, 1509-1512. https://doi.org/10.1126/science.1178811
  8. Camenisch, T.D., Brilliant, M.H., and Segal, D.J. (2008). Critical parameters for genome editing using zinc finger nucleases. Mini Rev. Med. Chem. 8, 669-676. https://doi.org/10.2174/138955708784567458
  9. Cermak, T., Doyle, E.L., Christian, M., Wang, L., Zhang, Y., Schmidt, C., Baller, J.A., Somia, N.V., Bogdanove, A.J., and Voytas, D.F. (2011). Efficient design and assembly of custom TALEN and other TAL effector-based constructs for DNA targeting. Nucleic Acids Res. 39, e82. https://doi.org/10.1093/nar/gkr218
  10. Curtin, S.J., Zhang, F., Sander, J.D., Haun, W.J., Starker, C., Baltes, N.J., Reyon, D., Dahlborg, E.J., Goodwin, M.J., Coffman, A.P., et al. (2011). Targeted mutagenesis of duplicated genes in soybean with zinc-finger nucleases. Plant Physiol. 156, 466-473. https://doi.org/10.1104/pp.111.172981
  11. Deng, D., Yan, C., Pan, X., Mahfouz, M., Wang, J., Zhu, J.K., Shi, Y., and Yan, N. (2012). Structural basis for sequence-specific recognition of DNA by TAL effectors. Science 335, 720-723. https://doi.org/10.1126/science.1215670
  12. Dreier, B., Segal, D.J., and Barbas, C.F., 3rd (2000). Insights into the molecular recognition of the 5'-GNN-3' family of DNA sequences by zinc finger domains. J. Mol. Biol. 303, 489-502. https://doi.org/10.1006/jmbi.2000.4133
  13. Dreier, B., Beerli, R.R., Segal, D.J., Flippin, J.D., and Barbas, C.F., 3rd (2001). Development of zinc finger domains for recognition of the 5'-ANN-3' family of DNA sequences and their use in the construction of artificial transcription factors. J. Biol. Chem. 276, 29466-29478. https://doi.org/10.1074/jbc.M102604200
  14. Dreier, B., Fuller, R.P., Segal, D.J., Lund, C.V., Blancafort, P., Huber, A., Koksch, B., and Barbas, C.F., 3rd (2005). Development of zinc finger domains for recognition of the 5'-CNN-3' family DNA sequences and their use in the construction of artificial transcription factors. J. Biol. Chem. 280, 35588-35597. https://doi.org/10.1074/jbc.M506654200
  15. Engler, C., Kandzia, R., and Marillonnet, S. (2008). A one pot, one step, precision cloning method with high throughput capability. PLoS One 3, e3647. https://doi.org/10.1371/journal.pone.0003647
  16. Feng, X., Bednarz, A.L., and Colloms, S.D. (2010). Precise targeted integration by a chimaeric transposase zinc-finger fusion protein. Nucleic Acids Res. 38, 1204-1216. https://doi.org/10.1093/nar/gkp1068
  17. Gaj, T., Guo, J., Kato, Y., Sirk, S.J., and Barbas, C.F., 3rd (2012). Targeted gene knockout by direct delivery of zinc-finger nuclease proteins. Nat. Methods 9, 805-807. https://doi.org/10.1038/nmeth.2030
  18. Gaj, T., Gersbach, C.A., and Barbas, C.F., 3rd (2013a). ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends Biotechnol. 31, 397-405. https://doi.org/10.1016/j.tibtech.2013.04.004
  19. Gaj, T., Mercer, A.C., Sirk, S.J., Smith, H.L., and Barbas, C.F., 3rd (2013b). A comprehensive approach to zinc-finger recombinase customization enables genomic targeting in human cells. Nucleic Acids Res. 41, 3937-3946. https://doi.org/10.1093/nar/gkt071
  20. Gaj, T., Liu, J., Anderson, K.E., Sirk, S.J., and Barbas, C.F., 3rd (2014a). Protein delivery using Cys2-His2 zinc-finger domains. ACS Chem. Biol. 9, 1662-1667. https://doi.org/10.1021/cb500282g
  21. Gaj, T., Sirk, S.J., Tingle, R.D., Mercer, A.C., Wallen, M.C., and Barbas, C.F., 3rd (2014b). Enhancing the specificity of recombinase-mediated genome engineering through dimer interface redesign. J. Am. Chem. Soc. 136, 5047-5056. https://doi.org/10.1021/ja4130059
  22. Gersbach, C.A., Gaj, T., and Barbas, C.F., 3rd (2014). Synthetic zinc finger proteins: the advent of targeted gene regulation and genome modification technologies. Acc. Chem. Res. 47, 2309-2318. https://doi.org/10.1021/ar500039w
  23. Ghosh, I., Stains, C.I., Ooi, A.T., and Segal, D.J. (2006). Direct detection of double-stranded DNA: Molecular methods and applications for DNA diagnostics. Mol. Biosyst. 2, 551-560. https://doi.org/10.1039/b611169f
  24. Gordley, R.M., Smith, J.D., Graslund, T., and Barbas, C.F., 3rd (2007). Evolution of programmable zinc finger-recombinases with activity in human cells. J. Mol. Biol. 367, 802-813. https://doi.org/10.1016/j.jmb.2007.01.017
  25. Gordley, R.M., Gersbach, C.A., and Barbas, C.F., 3rd (2009). Synthesis of programmable integrases. Proc. Natl. Acad. Sci. USA 106, 5053-5058. https://doi.org/10.1073/pnas.0812502106
  26. Graslund, T., Li, X., Magnenat, L., Popkov, M., and Barbas, C.F., 3rd (2005). Exploring strategies for the design of artificial transcription factors: targeting sites proximal to known regulatory regions for the induction of gamma-globin expression and the treatment of sickle cell disease. J. Biol. Chem. 280, 3707-3714. https://doi.org/10.1074/jbc.M406809200
  27. Grindley, N.D., Whiteson, K.L., and Rice, P.A. (2006). Mechanisms of site-specific recombination. Annu. Rev. Biochem. 75, 567-605. https://doi.org/10.1146/annurev.biochem.73.011303.073908
  28. Hockemeyer, D., Wang, H., Kiani, S., Lai, C.S., Gao, Q., Cassady, J.P., Cost, G.J., Zhang, L., Santiago, Y., Miller, J.C., et al. (2011). Genetic engineering of human pluripotent cells using TALE nucleases. Nat. Biotechnol. 29, 731-734. https://doi.org/10.1038/nbt.1927
  29. Holt, N., Wang, J., Kim, K., Friedman, G., Wang, X., Taupin, V., Crooks, G.M., Kohn, D.B., Gregory, P.D., Holmes, M.C., et al. (2010). Human hematopoietic stem/progenitor cells modified by zinc-finger nucleases targeted to CCR5 control HIV-1 in vivo. Nat. Biotechnol. 28, 839-847. https://doi.org/10.1038/nbt.1663
  30. Jiang, F., and Doudna, J.A. (2015). The structural biology of CRISPRCas systems. Curr. Opin. Struct. Biol. 30, 100-111. https://doi.org/10.1016/j.sbi.2015.02.002
  31. Jinek, M., Chylinski, K., Fonfara, I., Hauer, M., Doudna, J.A., and Charpentier, E. (2012). A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337, 816-821. https://doi.org/10.1126/science.1225829
  32. Joung, J.K., Ramm, E.I., and Pabo, C.O. (2000). A bacterial twohybrid selection system for studying protein-DNA and protein-protein interactions. Proc. Natl. Acad. Sci. USA 97, 7382-7387. https://doi.org/10.1073/pnas.110149297
  33. Kim, M.S., Stybayeva, G., Lee, J.Y., Revzin, A., and Segal, D.J. (2011). A zinc finger protein array for the visual detection of specific DNA sequences for diagnostic applications. Nucleic Acids Res. 39, e29. https://doi.org/10.1093/nar/gkq1214
  34. Kolb, A.F., Coates, C.J., Kaminski, J.M., Summers, J.B., Miller, A.D., and Segal, D.J. (2005). Site-directed genome modification: nucleic acid and protein modules for targeted integration and gene correction. Trends Biotechnol. 23, 399-406. https://doi.org/10.1016/j.tibtech.2005.06.005
  35. Li, H., Haurigot, V., Doyon, Y., Li, T., Wong, S.Y., Bhagwat, A.S., Malani, N., Anguela, X.M., Sharma, R., Ivanciu, L., et al. (2011a). In vivo genome editing restores haemostasis in a mouse model of haemophilia. Nature 475, 217-221. https://doi.org/10.1038/nature10177
  36. Li, T., Huang, S., Zhao, X., Wright, D.A., Carpenter, S., Spalding, M.H., Weeks, D.P., and Yang, B. (2011b). Modularly assembled designer TAL effector nucleases for targeted gene knockout and gene replacement in eukaryotes. Nucleic Acids Res. 39, 6315-6325. https://doi.org/10.1093/nar/gkr188
  37. Li, L., Krymskaya, L., Wang, J., Henley, J., Rao, A., Cao, L.F., Tran, C.A., Torres-Coronado, M., Gardner, A., Gonzalez, N., et al. (2013). Genomic editing of the HIV-1 coreceptor CCR5 in adult hematopoietic stem and progenitor cells using zinc finger nucleases. Mol. Ther. 21, 1259-1269. https://doi.org/10.1038/mt.2013.65
  38. Maeder, M.L., Thibodeau-Beganny, S., Osiak, A., Wright, D.A., Anthony, R.M., Eichtinger, M., Jiang, T., Foley, J.E., Winfrey, R.J., Townsend, J.A., et al. (2008). Rapid "open-source" engineering of customized zinc-finger nucleases for highly efficient gene modification. Mol. Cell 31, 294-301. https://doi.org/10.1016/j.molcel.2008.06.016
  39. Maeder, M.L., Thibodeau-Beganny, S., Sander, J.D., Voytas, D.F., and Joung, J.K. (2009). Oligomerized pool engineering (OPEN): an 'opensource' protocol for making customized zinc-finger arrays. Nat. Protoc. 4, 1471-1501. https://doi.org/10.1038/nprot.2009.98
  40. Maeder, M.L., Linder, S.J., Reyon, D., Angstman, J.F., Fu, Y., Sander, J.D., and Joung, J.K. (2013). Robust, synergistic regulation of human gene expression using TALE activators. Nat. Methods 10, 243-245. https://doi.org/10.1038/nmeth.2366
  41. Mahfouz, M.M., Li, L., Piatek, M., Fang, X., Mansour, H., Bangarusamy, D.K., and Zhu, J.K. (2012). Targeted transcriptional repression using a chimeric TALE-SRDX repressor protein. Plant Mol. Biol. 78, 311-321. https://doi.org/10.1007/s11103-011-9866-x
  42. Mak, A.N., Bradley, P., Cernadas, R.A., Bogdanove, A.J., and Stoddard, B.L. (2012). The crystal structure of TAL effector PthXo1 bound to its DNA target. Science 335, 716-719. https://doi.org/10.1126/science.1216211
  43. Mak, A.N., Bradley, P., Bogdanove, A.J., and Stoddard, B.L. (2013). TAL effectors: function, structure, engineering and applications. Curr. Opin. Struct. Biol. 23, 93-99. https://doi.org/10.1016/j.sbi.2012.11.001
  44. Mercer, A.C., Gaj, T., Fuller, R.P., and Barbas, C.F., 3rd (2012). Chimeric TALE recombinases with programmable DNA sequence specificity. Nucleic Acids Res. 40, 11163-11172. https://doi.org/10.1093/nar/gks875
  45. Miller, J.C., Tan, S., Qiao, G., Barlow, K.A., Wang, J., Xia, D.F., Meng, X., Paschon, D.E., Leung, E., Hinkley, S.J., et al. (2011). A TALE nuclease architecture for efficient genome editing. Nat. Biotechnol. 29, 143-148. https://doi.org/10.1038/nbt.1755
  46. Moore, M., Klug, A., and Choo, Y. (2001). Improved DNA binding specificity from polyzinc finger peptides by using strings of two-finger units. Proc. Natl. Acad. Sci. USA 98, 1437-1441. https://doi.org/10.1073/pnas.98.4.1437
  47. Morbitzer, R., Elsaesser, J., Hausner, J., and Lahaye, T. (2011). Assembly of custom TALE-type DNA binding domains by modular cloning. Nucleic Acids Res. 39, 5790-5799. https://doi.org/10.1093/nar/gkr151
  48. Moscou, M.J., and Bogdanove, A.J. (2009). A simple cipher governs DNA recognition by TAL effectors. Science 326, 1501. https://doi.org/10.1126/science.1178817
  49. Mussolino, C., Morbitzer, R., Lutge, F., Dannemann, N., Lahaye, T., and Cathomen, T. (2011). A novel TALE nuclease scaffold enables high genome editing activity in combination with low toxicity. Nucleic Acids Res. 39, 9283-9293. https://doi.org/10.1093/nar/gkr597
  50. Ooi, A.T., Stains, C.I., Ghosh, I., and Segal, D.J. (2006). Sequenceenabled reassembly of beta-lactamase (SEER-LAC): a sensitive method for the detection of double-stranded DNA. Biochemistry 45, 3620-3625. https://doi.org/10.1021/bi0517032
  51. Ousterout, D.G., Perez-Pinera, P., Thakore, P.I., Kabadi, A.M., Brown, M.T., Qin, X., Fedrigo, O., Mouly, V., Tremblay, J.P., and Gersbach, C.A. (2013). Reading frame correction by targeted genome editing restores dystrophin expression in cells from Duchenne muscular dystrophy patients. Mol. Ther. 21, 1718-1726. https://doi.org/10.1038/mt.2013.111
  52. Owens, J.B., Urschitz, J., Stoytchev, I., Dang, N.C., Stoytcheva, Z., Belcaid, M., Maragathavally, K.J., Coates, C.J., Segal, D.J., and Moisyadi, S. (2012). Chimeric piggyBac transposases for genomic targeting in human cells. Nucleic Acids Res. 40, 6978-6991. https://doi.org/10.1093/nar/gks309
  53. Owens, J.B., Mauro, D., Stoytchev, I., Bhakta, M.S., Kim, M.S., Segal, D.J., and Moisyadi, S. (2013). Transcription activator like effector (TALE)-directed piggyBac transposition in human cells. Nucleic Acids Res. 41, 9197-9207. https://doi.org/10.1093/nar/gkt677
  54. Perez, E.E., Wang, J., Miller, J.C., Jouvenot, Y., Kim, K.A., Liu, O., Wang, N., Lee, G., Bartsevich, V.V., Lee, Y.L., et al. (2008). Establishment of HIV-1 resistance in CD4+ T cells by genome editing using zinc-finger nucleases. Nat. Biotechnol. 26, 808-816. https://doi.org/10.1038/nbt1410
  55. Perez-Pinera, P., Ousterout, D.G., Brunger, J.M., Farin, A.M., Glass, K.A., Guilak, F., Crawford, G.E., Hartemink, A.J., and Gersbach, C.A. (2013). Synergistic and tunable human gene activation by combinations of synthetic transcription factors. Nat. Methods 10, 239-242. https://doi.org/10.1038/nmeth.2361
  56. Reyon, D., Tsai, S.Q., Khayter, C., Foden, J.A., Sander, J.D., and Joung, J.K. (2012). FLASH assembly of TALENs for high-throughput genome editing. Nat. Biotechnol. 30, 460-465. https://doi.org/10.1038/nbt.2170
  57. Reyon, D., Maeder, M.L., Khayter, C., Tsai, S.Q., Foley, J.E., Sander, J.D., and Joung, J.K. (2013). Engineering customized TALE nucleases (TALENs) and TALE transcription factors by fast ligation-based automatable solid-phase high-throughput (FLASH) assembly. Curr. Protoc. Mol. Biol. Chapter 12, Unit 12 16.
  58. Rogers, J.M., Barrera, L.A., Reyon, D., Sander, J.D., Kellis, M., Joung, J.K., and Bulyk, M.L. (2015). Context influences on TALE-DNA binding revealed by quantitative profiling. Nat. Commun. 6, 7440. https://doi.org/10.1038/ncomms8440
  59. Sander, J.D., Cade, L., Khayter, C., Reyon, D., Peterson, R.T., Joung, J.K., and Yeh, J.R. (2011). Targeted gene disruption in somatic zebrafish cells using engineered TALENs. Nat. Biotechnol. 29, 697-698. https://doi.org/10.1038/nbt.1934
  60. Sanjana, N.E., Cong, L., Zhou, Y., Cunniff, M.M., Feng, G., and Zhang, F. (2012). A transcription activator-like effector toolbox for genome engineering. Nat. Protoc. 7, 171-192. https://doi.org/10.1038/nprot.2011.431
  61. Sebastiano, V., Maeder, M.L., Angstman, J.F., Haddad, B., Khayter, C., Yeo, D.T., Goodwin, M.J., Hawkins, J.S., Ramirez, C.L., Batista, L.F., et al. (2011). In situ genetic correction of the sickle cell anemia mutation in human induced pluripotent stem cells using engineered zinc finger nucleases. Stem Cells 29, 1717-1726. https://doi.org/10.1002/stem.718
  62. Segal, D.J., and Meckler, J.F. (2013). Genome engineering at the dawn of the golden age. Annu. Rev. Genomics Hum. Genet. 14, 135-158. https://doi.org/10.1146/annurev-genom-091212-153435
  63. Segal, D.J., Dreier, B., Beerli, R.R., and Barbas, C.F., 3rd (1999). Toward controlling gene expression at will: selection and design of zinc finger domains recognizing each of the 5'-GNN-3' DNA target sequences. Proc. Natl. Acad. Sci. USA 96, 2758-2763. https://doi.org/10.1073/pnas.96.6.2758
  64. Segal, D.J., Beerli, R.R., Blancafort, P., Dreier, B., Effertz, K., Huber, A., Koksch, B., Lund, C.V., Magnenat, L., Valente, D., et al. (2003). Evaluation of a modular strategy for the construction of novel polydactyl zinc finger DNA-binding proteins. Biochemistry 42, 2137-2148. https://doi.org/10.1021/bi026806o
  65. Segal, D.J., Goncalves, J., Eberhardy, S., Swan, C.H., Torbett, B.E., Li, X., and Barbas, C.F., 3rd (2004). Attenuation of HIV-1 replication in primary human cells with a designed zinc finger transcription factor. J. Biol. Chem. 279, 14509-14519. https://doi.org/10.1074/jbc.M400349200
  66. Segal, D.J., Crotty, J.W., Bhakta, M.S., Barbas, C.F., 3rd, and Horton, N.C. (2006). Structure of Aart, a designed six-finger zinc finger peptide, bound to DNA. J. Mol. Biol. 363, 405-421. https://doi.org/10.1016/j.jmb.2006.08.016
  67. Smith, M.C., and Thorpe, H.M. (2002). Diversity in the serine recombinases. Mol. Microbiol. 44, 299-307. https://doi.org/10.1046/j.1365-2958.2002.02891.x
  68. Soldner, F., Laganiere, J., Cheng, A.W., Hockemeyer, D., Gao, Q., Alagappan, R., Khurana, V., Golbe, L.I., Myers, R.H., Lindquist, S., et al. (2011). Generation of isogenic pluripotent stem cells differing exclusively at two early onset Parkinson point mutations. Cell 146, 318-331. https://doi.org/10.1016/j.cell.2011.06.019
  69. Sun, N., Liang, J., Abil, Z., and Zhao, H. (2012). Optimized TAL effector nucleases (TALENs) for use in treatment of sickle cell disease. Mol. Biosyst. 8, 1255-1263. https://doi.org/10.1039/c2mb05461b
  70. Urnov, F.D., Rebar, E.J., Holmes, M.C., Zhang, H.S., and Gregory, P.D. (2010). Genome editing with engineered zinc finger nucleases. Nat. Rev. Genet. 11, 636-646. https://doi.org/10.1038/nrg2842
  71. Voigt, K., Gogol-Doring, A., Miskey, C., Chen, W., Cathomen, T., Izsvak, Z., and Ivics, Z. (2012). Retargeting sleeping beauty transposon insertions by engineered zinc finger DNA-binding domains. Mol. Ther. 20, 1852-1862. https://doi.org/10.1038/mt.2012.126
  72. Wilber, A., Tschulena, U., Hargrove, P.W., Kim, Y.S., Persons, D.A., Barbas, C.F., 3rd, and Nienhuis, A.W. (2010). A zinc-finger transcriptional activator designed to interact with the gamma-globin gene promoters enhances fetal hemoglobin production in primary human adult erythroblasts. Blood 115, 3033-3041. https://doi.org/10.1182/blood-2009-08-240556
  73. Wu, H., Yang, W.P., and Barbas, C.F., 3rd (1995). Building zinc fingers by selection: toward a therapeutic application. Proc. Natl. Acad. Sci. USA 92, 344-348. https://doi.org/10.1073/pnas.92.2.344
  74. Yusa, K., Rashid, S.T., Strick-Marchand, H., Varela, I., Liu, P.Q., Paschon, D.E., Miranda, E., Ordonez, A., Hannan, N.R., Rouhani, F.J., et al. (2011). Targeted gene correction of alpha1-antitrypsin deficiency in induced pluripotent stem cells. Nature 478, 391-394. https://doi.org/10.1038/nature10424
  75. Zhang, F., Cong, L., Lodato, S., Kosuri, S., Church, G.M., and Arlotta, P. (2011). Efficient construction of sequence-specific TAL effectors for modulating mammalian transcription. Nat. Biotechnol. 29, 149-153. https://doi.org/10.1038/nbt.1775
  76. Zou, J., Mali, P., Huang, X., Dowey, S.N., and Cheng, L. (2011). Sitespecific gene correction of a point mutation in human iPS cells derived from an adult patient with sickle cell disease. Blood 118, 4599-4608. https://doi.org/10.1182/blood-2011-02-335554

피인용 문헌

  1. The conserved basic residues and the charged amino acid residues at the α-helix of the zinc finger motif regulate the nuclear transport activity of triple C2H2 zinc finger proteins vol.13, pp.1, 2018, https://doi.org/10.1371/journal.pone.0191971
  2. Zinc finger domains as therapeutic targets for metal-based compounds – an update pp.1756-591X, 2018, https://doi.org/10.1039/C8MT00262B
  3. Pathogen-specific DNA sensing with engineered zinc finger proteins immobilized on a polymer chip vol.143, pp.17, 2018, https://doi.org/10.1039/C8AN00395E
  4. The Arms Race Between KRAB-Zinc Finger Proteins and Endogenous Retroelements and Its Impact on Mammals vol.53, pp.1, 2017, https://doi.org/10.1146/annurev-genet-112618-043717
  5. Chimerization Enables Gene Synthesis and Lentiviral Delivery of Customizable TALE-Based Effectors vol.21, pp.3, 2017, https://doi.org/10.3390/ijms21030795
  6. Recent advances in genome editing of stem cells for drug discovery and therapeutic application vol.209, pp.None, 2017, https://doi.org/10.1016/j.pharmthera.2020.107501
  7. Induced Methylation in Plants as a Crop Improvement Tool: Progress and Perspectives vol.10, pp.10, 2017, https://doi.org/10.3390/agronomy10101484
  8. Delivery technologies for T cell gene editing: Applications in cancer immunotherapy vol.67, pp.None, 2017, https://doi.org/10.1016/j.ebiom.2021.103354
  9. Genomics in medicine: A new era in medicine vol.11, pp.5, 2017, https://doi.org/10.5662/wjm.v11.i5.231
  10. Application of Engineered Zinc Finger Proteins Immobilized on Paramagnetic Beads for Multiplexed Detection of Pathogenic DNA vol.31, pp.9, 2017, https://doi.org/10.4014/jmb.2106.06057