DOI QR코드

DOI QR Code

Quantitative Morphology of High-Redshift Galaxies Using GALEX Ultraviolet Images of Nearby Galaxies

  • Yeom, Bum-Suk (Department of Astronomy, Space Science, and Geology, Chungnam National University) ;
  • Rey, Soo-Chang (Department of Astronomy, Space Science, and Geology, Chungnam National University) ;
  • Kim, Youngkwang (Department of Astronomy, Space Science, and Geology, Chungnam National University) ;
  • Lee, Youngdae (Korea Astronomy and Space Science Institute) ;
  • Chung, Jiwon (Department of Astronomy, Space Science, and Geology, Chungnam National University) ;
  • Kim, Suk (Korea Astronomy and Space Science Institute) ;
  • Lee, Woong (Department of Astronomy, Space Science, and Geology, Chungnam National University)
  • Received : 2017.08.23
  • Accepted : 2017.09.05
  • Published : 2017.09.15

Abstract

We present simulations of the optical-band images of high-redshift galaxies utilizing 845 near-ultraviolet (NUV) images of nearby galaxies obtained through the Galaxy Evolution Explorer (GALEX). We compute the concentration (C), asymmetry (A), Gini (G), and $M_{20}$ parameters of the GALEX NUV/Sloan Digital Sky Survey r-band images at z ~ 0 and their artificially redshifted optical images at z = 0.9 and 1.6 in order to quantify the morphology of galaxies at local and high redshifts. The morphological properties of nearby galaxies in the NUV are presented using a combination of morphological parameters, in which early-type galaxies are well separated from late-type galaxies in the $G-M_{20}$, $C-M_{20}$, A-C, and $A-M_{20}$ planes. Based on the distribution of galaxies in the A-C and $G-M_{20}$ planes, we examine the morphological K-correction (i.e., cosmological distance effect and bandshift effect). The cosmological distance effect on the quantitative morphological parameters is found to be significant for early-type galaxies, while late-type galaxies are more greatly affected by the bandshift effect. Knowledge of the morphological K-correction will set the foundation for forthcoming studies on understanding the quantitative assessment of galaxy evolution.

Keywords

References

  1. Abraham RG, Valdes F, Yee HKC, van den Bergh S, The morphologies of distant galaxies. I: an automated classification system, Astrophys. J. 432, 75-90 (1994). https://doi.org/10.1086/174550
  2. Abraham RG, Tanvir NR, Santiago BX, Ellis RS, Glazebrook KG, et al., Galaxy morphology to I=25 mag in the Hubble Deep Field, Mon. Not. R. Astron. Soc. Lett. 279, L47-L52 (1996). https://doi.org/10.1093/mnras/279.3.L47
  3. Abraham RG, van den Bergh S, Nair P, A new approach to galaxy morphology. I. analysis of the Sloan Digital Sky Survey early data release, Astrophys. J. 588, 218-229 (2003). https://doi.org/10.1086/373919
  4. Beckwith SVW, Stiavelli M, Koekemoer AM, Caldwell JAR, Ferguson HC, et al., The Hubble Ultra Deep Field, Astron. J. 132, 1729-1755 (2006). https://doi.org/10.1086/507302
  5. Bershady MA, Jangren A, Conselice CJ, Structural and photometric classification of galaxies. I. calibration based on a nearby galaxy sample, Astron. J. 119, 2645-2663 (2000). https://doi.org/10.1086/301386
  6. Bertin E, Arnouts S, SExtractor: Software for source extraction, Astron. Astrophys. Suppl. Ser. 117, 393-404 (1996). https://doi.org/10.1051/aas:1996164
  7. Bohlin RC, Cornett RH, Hill JK, Hill RS, Landsman WB, et al., Simulated optical images of galaxies at Z about 1 using ultraviolet images of nearby galaxies, Astrophys. J. 368, 12-27 (1991). https://doi.org/10.1086/169666
  8. Burgarella D, Buat V, Donas J, Milliard B, Chapelon S, The ultraviolet visibility and quantitative morphology of galactic disks at low and high redshift, Astron. Astrophys. 369, 421-431 (2001). https://doi.org/10.1051/0004-6361:20010107
  9. Cameron E, Carollo CM, Oesch PA, Bouwens RJ, Illingworth GD, et al., Active and passive galaxies at z - 2: rest-frame optical morphologies with WFC3, Astrophys. J. 743, 146-163 (2011). https://doi.org/10.1088/0004-637X/743/2/146
  10. Cardelli JA, Clayton GC, Mathis JS, The relationship between infrared, optical, and ultraviolet extinction, Astrophys. J. 345, 245-256 (1989). https://doi.org/10.1086/167900
  11. Cassata P, Cimatti A, Franceschini A, Daddi E, Pignatelli E, et al., The evolution of the galaxy B-band rest-frame morphology to z- 2: new clues from the K20/GOODS sample, Mon. Not. R. Astron. Soc. 357, 903-917 (2005). https://doi.org/10.1111/j.1365-2966.2005.08657.x
  12. Cassata P, Giavalisco M, Guo Yicheng, Ferguson H, Koekemoer AM, et al., The morphology of passively evolving galaxies at z - 2 from Hubble Space Telescope/WFC3 deep imaging in the Hubble Ultra Deep Field, Astrophys. J. Lett. 714, L79-L83 (2010). https://doi.org/10.1088/2041-8205/714/1/L79
  13. Conselice CJ, The symmetry, color, and morphology of galaxies, Publ. Astron. Soc. Pac. 109, 1251-1255 (1997). https://doi.org/10.1086/134004
  14. Conselice CJ, The relationship between stellar light distributions of galaxies and their formation histories, Astrophys. J. Suppl. Ser. 147, 1-28 (2003). https://doi.org/10.1086/375001
  15. Conselice CJ, Bershady MA, Jangren A, The asymmetry of galaxies: physical morphology for nearby and high-redshift galaxies, Astrophys. J. 529, 886-910 (2000). https://doi.org/10.1086/308300
  16. Conselice CJ, Bershady MA, Dickinson M, Papovich C, A direct measurement of major galaxy mergers at z $_{\sim}^{<}$ 3, Astron. J. 126, 1183-1207 (2003). https://doi.org/10.1086/377318
  17. Conselice CJ, Blackburne JA, Papovich C, The luminosity, stellar mass, and number density evolution of field galaxies of known morphology from z = 0.5 to 3, Astrophys. J. 620, 564-583 (2005). https://doi.org/10.1086/426102
  18. Conselice CJ, Rajgor S, Myers R, The structures of distant galaxies - I. galaxy structures and the merger rate to z - 3 in the Hubble Ultra-Deep Field, Mon. Not. R. Astron. Soc. 386, 909-927 (2008). https://doi.org/10.1111/j.1365-2966.2008.13069.x
  19. Conselice CJ, Bluck AFL, Ravindranath S, Mortlock A, Koekemoer AM, et al., The tumultuous formation of the Hubble sequence at z > 1 examined with HST/wide-field camera-3 observations of the Hubble Ultra Deep Field, Mon. Not. R. Astron. Soc. 417, 2770-2788 (2011). https://doi.org/10.1111/j.1365-2966.2011.19442.x
  20. Corbin MR, Urban A, Stobie E, Thompson RI, Schneider G, A multivariate analysis of galaxies in the Hubble Deep Field-north, Astrophys. J. 551, 23-36 (2001). https://doi.org/10.1086/320081
  21. de Vaucouleurs G, de Vaucouleurs A, Corwin HG, Buta RJ, Paturel G, et al., Third Reference Catalogue of Bright Galaxies, Volume I: Explanations and references, Volume II: Data for galaxies between 0h and 12h, Volume III: Data for galaxies between 12h and 24h (Springer-Verlag, New York, 1991).
  22. Driver SP, Fernandez-Soto A, Couch WJ, Odewahn SC, Windhorst RA, et al., Morphological number counts and redshift distributions to I < 26 from the Hubble deep field: implications for the evolution of ellipticals, spirals, and irregulars, Astrophys. J. Lett. 496, L93-L96 (1998). https://doi.org/10.1086/311257
  23. Gardner JP, Heap SR, Malumuth EM, Hill RS, Smith EP, Proceedings of the AIP Conference, College Park, MD, USA, 2-4 May 1997.
  24. Giavalisco M, Livio M, Bohlin, RC, Macchetto FD, Stecher TP, On the morphology of the HST faint galaxies, Astron. J. 112, 369-377 (1996). https://doi.org/10.1086/118021
  25. Gil de Paz A, Boissier S, Madore BF, Seibert M, Joe YH, et al., The GALEX ultraviolet atlas of nearby galaxies, Astrophys. J. Suppl. Ser. 173, 185-255 (2007). https://doi.org/10.1086/516636
  26. Hibbard JE, Vacca WD, The apparent morphology of peculiar galaxies at intermediate to high redshifts, Astron. J. 114, 1741-1752 (1997). https://doi.org/10.1086/118603
  27. Hogg DW, Distance measures in cosmology, eprint arXiv:astroph/9905116 (1999).
  28. Kent SM, CCD surface photometry of field Galaxies. II - bulge/disk decompositions, Astrophys. J. Suppl. Ser. 59, 115-159 (1985). https://doi.org/10.1086/191066
  29. Krist J, Hook R, The Tiny Tim User's Guide, Version 6.3 (Space Telescope Science Institute, Baltimore, 2004).
  30. Kuchinski LE, Freedman WL, Madore BF, Trewhella M, Bohlin RC, et al., Comparing galaxy morphology at ultraviolet and optical wavelengths, Astrophys. J. Suppl. Ser. 131, 441-463 (2000). https://doi.org/10.1086/317371
  31. Kuchinski LE, Madore BF, Freedman WL, Trewhella M, Quantitative morphology of galaxies observed in the ultraviolet, Astron. J. 122, 729-749 (2001). https://doi.org/10.1086/321181
  32. Lauger S, Burgarella D, Buat V, Spectro-morphology of galaxies: a multi-wavelength (UV-R) classification method, Astron. Astrophys. 434, 77-87 (2005). https://doi.org/10.1051/0004-6361:200400138
  33. Lisker T, Is the Gini coefficient a stable measure of galaxy structure?, Astrophys. J. Suppl. Ser. 179, 319-325 (2008). https://doi.org/10.1086/591795
  34. Lotz JM, Primack J, Madau P, A new nonparametric approach to galaxy morphological classification, Astron. J. 128, 163-182 (2004). https://doi.org/10.1086/421849
  35. Lotz JM, Jonsson P, Cox TJ, Primack JR, Galaxy merger morphologies and time-scales from simulations of equal-mass gas-rich disc mergers, Mon. Not. R. Astron. Soc. 391, 1137-1162 (2008). https://doi.org/10.1111/j.1365-2966.2008.14004.x
  36. Marcum PM, O'Connell RW, Fanelli MN, Cornett RH, Waller WH, et al., An ultraviolet/optical atlas of bright galaxies, Astrophys. J. Suppl. Ser. 132, 129-198 (2001). https://doi.org/10.1086/318953
  37. Martin DC, Fanson J, Schiminovich D, Morrissey P, Friedman PG, et al., The Galaxy Evolution Explorer: A space ultraviolet survey mission, Astrophys. J. 619, L1-L6 (2005). https://doi.org/10.1086/426387
  38. Morrissey P, Schiminovich D, Barlow TA, Martin DC, Blakkolb B, et al., The on-orbit performance of the Galaxy Evolution Explorer, Astrophys. J. Lett. 619, L7-L10 (2005). https://doi.org/10.1086/424734
  39. Morrissey P, Conrow T, Barlow TA, Small T, Seibert M, et al., The calibration and data products of GALEX, Astrophys. J. Suppl. Ser. 173, 682-697 (2007). https://doi.org/10.1086/520512
  40. Munoz-Mateos JC, Gil de Paz A, Zamorano J, Boissier S, Dale DA, et al., Radial distribution of stars, gas, and dust in SINGS galaxies. I. surface photometry and morphology, Astrophys. J. 703, 1569-1596 (2009). https://doi.org/10.1088/0004-637X/703/2/1569
  41. O'Connell RW, Proceeding of the AIP Conference, College Park, MD, USA, 2-4 May 1997.
  42. Overzier RA, Heckman TM, Schiminovich D, Basu-Zych A, Goncalves T, et al., Morphologies of local Lyman break galaxy analogs. II. a comparison with galaxies at z $\simeq$ 2-4 in ACS and WFC3 images of the Hubble Ultra Deep Field, Astrophys. J. 710, 979-991 (2010). https://doi.org/10.1088/0004-637X/710/2/979
  43. Papovich C, Giavalisco M, Dickinson M, Conselice CJ, Ferguson HC, et al., The internal ultraviolet-optical color dispersion: quantifying the morphological K-correction, Astrophys. J. 598, 827-847 (2003). https://doi.org/10.1086/378976
  44. Petrosian V, Surface brightness and evolution of galaxies, Astrophys. J. 209, L1-L5 (1976). https://doi.org/10.1086/182253
  45. Schlegel DJ, Finkbeiner DP, Davis M, Maps of dust infrared emission for use in estimation of reddening and cosmic microwave background radiation foregrounds, Astrophys. J. 500, 525-553 (1998). https://doi.org/10.1086/305772
  46. Sirianni M, Jee MJ, Benitez N, Blakeslee JP, Martel AR, et al., The photometric performance and calibration of the Hubble Space Telescope advanced camera for Surveys, Publ. Astron. Soc. Pac. 117, 1049-1112 (2005). https://doi.org/10.1086/444553
  47. Takamiya M, Galaxy structural parameters: star formation rate and evolution with redshift, Astrophys. J. Suppl. Ser. 122, 109-150 (1999). https://doi.org/10.1086/313216
  48. Taylor-Mager VA, Conselice CJ, Windhorst RA, Jansen RA, Dependence of galaxy structure on rest-frame wavelength and galaxy type, Astrophys. J. 659, 162-187 (2007). https://doi.org/10.1086/511806
  49. van den Bergh S, Cohen JG, Hogg DW, Blandford R, Caltech faint galaxy redshift survey. XIV. galaxy morphology in the Hubble Deep Field (North) and its flanking fields to z =1.2, Astron. J. 120, 2190-2205 (2000). https://doi.org/10.1086/316828
  50. Weedman DW, Quasar Astronomy (Cambridge University Press, Cambridge, 1986).
  51. Weinberg S, Gravitation and Cosmology: Principles and Applications of the General Theory of Relativity (John Wiley & Sons, New jersey, 1972).
  52. Williams RE, Blacker B, Dickinson M, Van Dyke Dixon W, Ferguson HC, et al., The Hubble Deep Field: observations, data reduction, and galaxy photometry, Astron. J. 112, 1335-1389 (1996). https://doi.org/10.1086/118105
  53. Windhorst RA, Taylor VA, Jansen RA, Odewahn SC, Chiarenza CAT, et al., A Hubble Space Telescope survey of the midultraviolet morphology of nearby galaxies, Astrophys. J. Suppl. Ser. 143, 113-158 (2002). https://doi.org/10.1086/341556
  54. York DG, Adelman J, Anderson Jr. JE, Anderson SF, Annis J, et al., The Sloan Digital Sky Survey: Technical Summary, Astron. J. 120, 1579-1587 (2000). https://doi.org/10.1086/301513