DOI QR코드

DOI QR Code

Chemical Composition of RM_1-390 - Large Magellanic Cloud Red Supergiant

  • Yushchenko, Alexander V. (Sejong University) ;
  • Jeong, Yeuncheol (Sejong University) ;
  • Gopka, Vira F. (Astronomical observatory, Odessa National University) ;
  • Vasil'eva, Svetlana V. (Astronomical observatory, Odessa National University) ;
  • Andrievsky, Sergey M. (Astronomical observatory, Odessa National University) ;
  • Yushchenko, Volodymyr O. (Astronomical observatory, Odessa National University)
  • Received : 2017.08.15
  • Accepted : 2017.08.31
  • Published : 2017.09.15

Abstract

A high resolution spectroscopic observation of the red supergiant star RM_1-390 in the Large Magellanic Cloud was made from a 3.6 m telescope at the European Southern Observatory. Spectral resolving power was R=20,000, with a signal-to-noise ratio S/N > 100. We found the atmospheric parameters of RM_1-390 to be as follows: the effective temperature $T_{eff}=4,250{\pm}50K$, the surface gravity ${\log}\;g=0.16{\pm}0.1$, the microturbulent velocity $v_{micro}=2.5km/s$, the macroturbulence velocity $v_{macro}=9km/s$ and the iron abundance $[Fe/H]=-0.73{\pm}0.11$. The abundances of 18 chemical elements from silicon to thorium in the atmosphere of RM_1-390 were found using the spectrum synthesis method. The relative deficiencies of all elements are close to that of iron. The fit of abundance pattern by the solar system distribution of r- and s-element isotopes shows the importance of the s-process. The plot of relative abundances as a function of second ionization potentials of corresponding chemical elements allows us to find a possibility of convective energy transport in the photosphere of RM_1-390.

Keywords

References

  1. Adams SM, Kochanek CS, Gerke JR, Stanek, KZ, The search for failed supernovae with the Large Binocular Telescope: constraints from 7 yr of data, Mon. Not. R. Astron. Soc. 469, 1445-1455 (2017a). https://doi.org/10.1093/mnras/stx898
  2. Adams SM, Kochanek CS, Gerke JR, Stanek KZ, Dai X, The search for failed supernovae with the Large Binocular Telescope: confirmation of a disappearing star, Mon. Not. R. Astron. Soc. 468, 4968-4981 (2017b). https://doi.org/10.1093/mnras/stx816
  3. Ardeberg A, Virdefors, B, Solar line blocking for ${\lambda}{\lambda}$4006-6860, Astron. Astrophys. Suppl. Ser. 36, 317-321 (1979).
  4. Biemont E, Palmeri P, Quinet P, Database on Rare Earths At Mons University (DREAM), [Internet], cited 2017 Apr 14, available from: http://hosting.umons.ac.be/html/agif/databases/dream.html
  5. Bonanos AZ, Massa DL, Sewilo M, Lennon DJ, Panagia N, et al., Spitzer SAGE infrared photometry of massive stars in the Large Magellanic Cloud, Astron. J. 138, 1003-1021 (2009). https://doi.org/10.1088/0004-6256/138/4/1003
  6. Bonanos AZ, Lennon DJ, Kohlinger F, van Loon JT, Massa DL, et al., Spitzer SAGE-SMC infrared photometry of massive stars in the Small Magellanic Cloud, Astron. J. 140, 416-429 (2010). https://doi.org/10.1088/0004-6256/140/2/416
  7. Boyer ML, Srinivasan S, van Loon JT, McDonald I, Meixner M, et al., Surveying the agents of galaxy evolution in the Tidally Stripped, Low Metallicity Small Magellanic Cloud (SAGE-SMC). II. Cool evolved stars, Astron. J. 142, A103 (2011). https://doi.org/10.1088/0004-6256/142/4/103
  8. Choudhury S, Subramaniam A, Cole AA, Photometric metallicity map of the Large Magellanic Cloud, Mon. Not. R. Astron. Soc. 455, 1855-1880 (2016). https://doi.org/10.1093/mnras/stv2414
  9. Delbouille L, Roland G, Neven L, Photometric atlas of the solar spectrum from ${\lambda}$ 3000 to ${\lambda}$ 10000, special volume (University of Liege, Liege, 1973).
  10. Elias JH, Frogel JA, Humphreys RA, M supergiants in the Milky Way and the Magellanic Clouds: colors, spectral types, and luminosities, Astrophys. J. Suppl. Ser. 57, 91-131 (1985). https://doi.org/10.1086/190997
  11. Fuhr JR, Wiese WL, A critical compilation of atomic transition probabilities for neutral and singly ionized iron, J. Phys. Chem. Ref. Data 35, 1669-1809 (2006). https://doi.org/10.1063/1.2218876
  12. Gonzalez-Fernandez C, Dorda R, Negueruela I, Marco A, A new survey of cool supergiants in the Magellanic Clouds, Astron. Astrophys. 578, A3 (2015). https://doi.org/10.1051/0004-6361/201425362
  13. Gopka VF, Yushchenko AV, Mishenina TV, Kim C, Musaev FA, et al., Atmospheric chemical composition of the halo star HD 221170 from a synthetic-spectrum analysis, Astron. Rep. 48, 577-587 (2004). https://doi.org/10.1134/1.1777275
  14. Gopka VF, Shavrina A, Vasileva S, Yushchenko A, Andrievsky S, et al., Preliminary study of red supergiant RM_1-667 in the Large Magellanic Cloud, Odessa Astron. Publ. 25, 64-65 (2012a).
  15. Gopka VF, Shavrina AV, Vasilyeva SV, Andrievsky SM, About chemical composition of supergiant PMMR145 in Small Magellanic Cloud. Osmium, Odessa Astron. Publ. 25, 167-168 (2012b).
  16. Gopka VF, Shavrina AV, Yushchenko VA, Vasil'eva SV, Yushchenko AV, et al., On the thorium absorption lines in the visible spectra of supergiant stars in the Magellanic Clouds, Bull. Crime. Astrophys. Obs. 109, 41-47 (2013a). https://doi.org/10.3103/S0190271713010087
  17. Gopka VF, Yushchenko A, Kovtyukh V, Shavrina A, Yushchenko V, et al., The abundances of heavy elements in red supergiants of Magellanic Clouds, Odessa Astron. Publ. 26, 54-59 (2013b).
  18. Greenstein JL, Analysis of the Metallic-Line stars. II, Astrophys. J. 109, 121-138 (1949). https://doi.org/10.1086/145112
  19. Grevesse N, Sauval AJ, The solar abundance of iron and the photospheric model, Astron. Astrophys. 347, 348-354 (1999).
  20. Gustafsson B, Edvardsson B, Eriksson K, Mizuno-Wiedner M, Jorgensen UG, et al., A grid of model atmospheres for cool stars, ASP Conference Series, vol. 288, Stellar Atmosphere Modeling, eds. Hubeny I, Mihalas D, Werner K (Astronomical Society of the Pacific, San Francisco, 2003), 331-334.
  21. Hill V, Chemical composition of six K supergiants in the Small Magellanic Cloud, Astron. Astrophys. 324, 435-448 (1997).
  22. Hirata R, Horaguchi T, VizieR online data catalog: atomic spectral line list, SIMBAD catalog VI/69 (1995). available from: http://vizier.cfa.harvard.edu/viz-bin/Cat?VI/69
  23. Humphreys RM, M supergiants and the low metal abundances in the Small Magellanic Cloud, Astrophys. J. 231, 384-387 (1979). https://doi.org/10.1086/157201
  24. Jeong Y, Yushchenko AV, Doikov DN, Gopka VF, Yushchenko VO, Chemical composition of RR Lyn - an eclipsing binary system with Am and ${\lambda}$ Boo type components, J. Astron. Space Sci. 34, 75-82 (2017). https://doi.org/10.5140/JASS.2017.34.2.75
  25. Kang YW, Yushchenko A, Hong K, Kim S, Yushchenko V, Chemical composition of the components of eclipsing binary star ZZ Bootis, Astron. J. 144, A35 (2012). https://doi.org/10.1088/0004-6256/144/2/35
  26. Kang YW, Yushchenko AV, Hong K, Guinan EF, Gopka VF, Signs of accretion in the abundance patterns of the components of the RS CVn-type eclipsing binary star LX Persei, Astron. J. 145, A167 (2013). https://doi.org/10.1088/0004-6256/145/6/167
  27. Kochanek CS, Beacom JF, Kistler MD, Prieto JL, Stanek KZ, et al., A survey about nothing: monitoring a million supergiants for failed supernovae, Astrophys. J. 684, 1336-1342 (2008). https://doi.org/10.1086/590053
  28. Kurucz RL, SYNTHE spectrum synthesis programs and line data, Kurucz CD-ROM (Smithsonian Astrophysical Observatory, Cambridge, 1993).
  29. Levesque EM, Massey P, Zytkow AN, Morrell N, Discovery of a Thorne-Zytkow object candidate in the Small Magellanic Cloud, Mon. Not. R. Astron. Soc. Lett. 443, L94-L98 (2014). https://doi.org/10.1093/mnrasl/slu080
  30. Massey P, Olsen KAG, The evolution of massive stars. I. Red supergiants in the Magellanic Clouds, Astron. J. 126, 2867-2886 (2003). https://doi.org/10.1086/379558
  31. Morton DC, Atomic data for resonance absorption lines. II. Wavelengths longward of the Lyman limit for heavy elements, Astrophys. J. Suppl. Ser. 130, 403-436 (2000). https://doi.org/10.1086/317349
  32. Munari U, Henden A, Frigo A, Zwitter T, Bienayme O, et al., APASS Landolt-Sloan BVgri photometry of RAVE stars. I. Data, effective temperatures, and reddening, Astron. J. 148, A81 (2014). https://doi.org/10.1088/0004-6256/148/5/81
  33. Piskunov NE, Kupka F, Ryabchikova TA, Weiss WW, Jeffery CS, VALD: the Vienna atomic line data base, Astron. Astrophys. Suppl. Ser. 112, 525-535 (1995).
  34. Rutten RJ, van der Zalm EBJ, Revision of solar equivalent widths, Fe I oscillator strengths and the solar iron abundance, Astron. Astrophys. Suppl. Ser. 55, 143-161 (1984).
  35. Simmerer J, Sneden C, Cowan JJ, Collier J, Woolf VM, et al., The rise of the s-process in the Galaxy, Astrophys. J. 617, 1091-1114 (2004). https://doi.org/10.1086/424504
  36. Szczygiel DM, Stanek KZ, Bonanos AZ, Pojmanski G, Pilecki B, et al., Variability of luminous stars in the Large Magellanic Cloud using 10 years of ASAS data, Astron. J. 140, 14-24 (2010). https://doi.org/10.1088/0004-6256/140/1/14
  37. Thorne KS, Zytkow AN, Red giants and supergiants with degenerate neutron cores, Astrophys. J. 199, L19-L24 (1975). https://doi.org/10.1086/181839
  38. Yushchenko AV, URAN: a software system for the analysis of stellar spectra, Proceedings of the 20th Stellar Conference of the Czech and Slovak Astronomical Institutes, ed. Dusek J (the Czech and Slovak Astronomical Institutes, Brno, 1998), 201-203.
  39. Yushchenko AV, Gopka VF, Khokhlova VL, Musaev FA, Bikmaev IF, Atmospheric chemical composition of the "twin" components of equal mass in the CP SB2 system 66 Eri, Astron. Lett. 25, 453-466 (1999).
  40. Yushchenko AV, Gopka VF, Kang YW, Kim C, Lee, BC, et al., The chemical composition of $\rho$ Puppis and the signs of accretion in the atmospheres of B-F-type stars, Astron. J. 149, A59 (2015). https://doi.org/10.1088/0004-6256/149/2/59