Browse > Article
http://dx.doi.org/10.5140/JASS.2017.34.3.183

Quantitative Morphology of High-Redshift Galaxies Using GALEX Ultraviolet Images of Nearby Galaxies  

Yeom, Bum-Suk (Department of Astronomy, Space Science, and Geology, Chungnam National University)
Rey, Soo-Chang (Department of Astronomy, Space Science, and Geology, Chungnam National University)
Kim, Youngkwang (Department of Astronomy, Space Science, and Geology, Chungnam National University)
Lee, Youngdae (Korea Astronomy and Space Science Institute)
Chung, Jiwon (Department of Astronomy, Space Science, and Geology, Chungnam National University)
Kim, Suk (Korea Astronomy and Space Science Institute)
Lee, Woong (Department of Astronomy, Space Science, and Geology, Chungnam National University)
Publication Information
Journal of Astronomy and Space Sciences / v.34, no.3, 2017 , pp. 183-197 More about this Journal
Abstract
We present simulations of the optical-band images of high-redshift galaxies utilizing 845 near-ultraviolet (NUV) images of nearby galaxies obtained through the Galaxy Evolution Explorer (GALEX). We compute the concentration (C), asymmetry (A), Gini (G), and $M_{20}$ parameters of the GALEX NUV/Sloan Digital Sky Survey r-band images at z ~ 0 and their artificially redshifted optical images at z = 0.9 and 1.6 in order to quantify the morphology of galaxies at local and high redshifts. The morphological properties of nearby galaxies in the NUV are presented using a combination of morphological parameters, in which early-type galaxies are well separated from late-type galaxies in the $G-M_{20}$, $C-M_{20}$, A-C, and $A-M_{20}$ planes. Based on the distribution of galaxies in the A-C and $G-M_{20}$ planes, we examine the morphological K-correction (i.e., cosmological distance effect and bandshift effect). The cosmological distance effect on the quantitative morphological parameters is found to be significant for early-type galaxies, while late-type galaxies are more greatly affected by the bandshift effect. Knowledge of the morphological K-correction will set the foundation for forthcoming studies on understanding the quantitative assessment of galaxy evolution.
Keywords
cosmology; high redshift; galaxy morphology; galaxy evolution; galaxy structure; ultraviolet;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Abraham RG, van den Bergh S, Nair P, A new approach to galaxy morphology. I. analysis of the Sloan Digital Sky Survey early data release, Astrophys. J. 588, 218-229 (2003). https://doi.org/10.1086/373919   DOI
2 Abraham RG, Tanvir NR, Santiago BX, Ellis RS, Glazebrook KG, et al., Galaxy morphology to I=25 mag in the Hubble Deep Field, Mon. Not. R. Astron. Soc. Lett. 279, L47-L52 (1996). https://doi.org/10.1093/mnras/279.3.L47   DOI
3 Beckwith SVW, Stiavelli M, Koekemoer AM, Caldwell JAR, Ferguson HC, et al., The Hubble Ultra Deep Field, Astron. J. 132, 1729-1755 (2006). https://doi.org/10.1086/507302   DOI
4 Bershady MA, Jangren A, Conselice CJ, Structural and photometric classification of galaxies. I. calibration based on a nearby galaxy sample, Astron. J. 119, 2645-2663 (2000). https://doi.org/10.1086/301386   DOI
5 Conselice CJ, The relationship between stellar light distributions of galaxies and their formation histories, Astrophys. J. Suppl. Ser. 147, 1-28 (2003). https://doi.org/10.1086/375001   DOI
6 Conselice CJ, Bershady MA, Jangren A, The asymmetry of galaxies: physical morphology for nearby and high-redshift galaxies, Astrophys. J. 529, 886-910 (2000). https://doi.org/10.1086/308300   DOI
7 Conselice CJ, Bershady MA, Dickinson M, Papovich C, A direct measurement of major galaxy mergers at z $_{\sim}^{<}$ 3, Astron. J. 126, 1183-1207 (2003). https://doi.org/10.1086/377318   DOI
8 Conselice CJ, Blackburne JA, Papovich C, The luminosity, stellar mass, and number density evolution of field galaxies of known morphology from z = 0.5 to 3, Astrophys. J. 620, 564-583 (2005). https://doi.org/10.1086/426102   DOI
9 Conselice CJ, Rajgor S, Myers R, The structures of distant galaxies - I. galaxy structures and the merger rate to z - 3 in the Hubble Ultra-Deep Field, Mon. Not. R. Astron. Soc. 386, 909-927 (2008). https://doi.org/10.1111/j.1365-2966.2008.13069.x   DOI
10 Conselice CJ, Bluck AFL, Ravindranath S, Mortlock A, Koekemoer AM, et al., The tumultuous formation of the Hubble sequence at z > 1 examined with HST/wide-field camera-3 observations of the Hubble Ultra Deep Field, Mon. Not. R. Astron. Soc. 417, 2770-2788 (2011). https://doi.org/10.1111/j.1365-2966.2011.19442.x   DOI
11 Corbin MR, Urban A, Stobie E, Thompson RI, Schneider G, A multivariate analysis of galaxies in the Hubble Deep Field-north, Astrophys. J. 551, 23-36 (2001). https://doi.org/10.1086/320081   DOI
12 de Vaucouleurs G, de Vaucouleurs A, Corwin HG, Buta RJ, Paturel G, et al., Third Reference Catalogue of Bright Galaxies, Volume I: Explanations and references, Volume II: Data for galaxies between 0h and 12h, Volume III: Data for galaxies between 12h and 24h (Springer-Verlag, New York, 1991).
13 Marcum PM, O'Connell RW, Fanelli MN, Cornett RH, Waller WH, et al., An ultraviolet/optical atlas of bright galaxies, Astrophys. J. Suppl. Ser. 132, 129-198 (2001). https://doi.org/10.1086/318953   DOI
14 Lisker T, Is the Gini coefficient a stable measure of galaxy structure?, Astrophys. J. Suppl. Ser. 179, 319-325 (2008). https://doi.org/10.1086/591795   DOI
15 Lotz JM, Primack J, Madau P, A new nonparametric approach to galaxy morphological classification, Astron. J. 128, 163-182 (2004). https://doi.org/10.1086/421849   DOI
16 Lotz JM, Jonsson P, Cox TJ, Primack JR, Galaxy merger morphologies and time-scales from simulations of equal-mass gas-rich disc mergers, Mon. Not. R. Astron. Soc. 391, 1137-1162 (2008). https://doi.org/10.1111/j.1365-2966.2008.14004.x   DOI
17 Martin DC, Fanson J, Schiminovich D, Morrissey P, Friedman PG, et al., The Galaxy Evolution Explorer: A space ultraviolet survey mission, Astrophys. J. 619, L1-L6 (2005). https://doi.org/10.1086/426387   DOI
18 Morrissey P, Schiminovich D, Barlow TA, Martin DC, Blakkolb B, et al., The on-orbit performance of the Galaxy Evolution Explorer, Astrophys. J. Lett. 619, L7-L10 (2005). https://doi.org/10.1086/424734   DOI
19 Krist J, Hook R, The Tiny Tim User's Guide, Version 6.3 (Space Telescope Science Institute, Baltimore, 2004).
20 Morrissey P, Conrow T, Barlow TA, Small T, Seibert M, et al., The calibration and data products of GALEX, Astrophys. J. Suppl. Ser. 173, 682-697 (2007). https://doi.org/10.1086/520512   DOI
21 Munoz-Mateos JC, Gil de Paz A, Zamorano J, Boissier S, Dale DA, et al., Radial distribution of stars, gas, and dust in SINGS galaxies. I. surface photometry and morphology, Astrophys. J. 703, 1569-1596 (2009). https://doi.org/10.1088/0004-637X/703/2/1569   DOI
22 Cameron E, Carollo CM, Oesch PA, Bouwens RJ, Illingworth GD, et al., Active and passive galaxies at z - 2: rest-frame optical morphologies with WFC3, Astrophys. J. 743, 146-163 (2011). https://doi.org/10.1088/0004-637X/743/2/146   DOI
23 Bertin E, Arnouts S, SExtractor: Software for source extraction, Astron. Astrophys. Suppl. Ser. 117, 393-404 (1996). https://doi.org/10.1051/aas:1996164   DOI
24 Bohlin RC, Cornett RH, Hill JK, Hill RS, Landsman WB, et al., Simulated optical images of galaxies at Z about 1 using ultraviolet images of nearby galaxies, Astrophys. J. 368, 12-27 (1991). https://doi.org/10.1086/169666   DOI
25 Burgarella D, Buat V, Donas J, Milliard B, Chapelon S, The ultraviolet visibility and quantitative morphology of galactic disks at low and high redshift, Astron. Astrophys. 369, 421-431 (2001). https://doi.org/10.1051/0004-6361:20010107   DOI
26 Cardelli JA, Clayton GC, Mathis JS, The relationship between infrared, optical, and ultraviolet extinction, Astrophys. J. 345, 245-256 (1989). https://doi.org/10.1086/167900   DOI
27 Driver SP, Fernandez-Soto A, Couch WJ, Odewahn SC, Windhorst RA, et al., Morphological number counts and redshift distributions to I < 26 from the Hubble deep field: implications for the evolution of ellipticals, spirals, and irregulars, Astrophys. J. Lett. 496, L93-L96 (1998). https://doi.org/10.1086/311257   DOI
28 Cassata P, Cimatti A, Franceschini A, Daddi E, Pignatelli E, et al., The evolution of the galaxy B-band rest-frame morphology to z- 2: new clues from the K20/GOODS sample, Mon. Not. R. Astron. Soc. 357, 903-917 (2005). https://doi.org/10.1111/j.1365-2966.2005.08657.x   DOI
29 Cassata P, Giavalisco M, Guo Yicheng, Ferguson H, Koekemoer AM, et al., The morphology of passively evolving galaxies at z - 2 from Hubble Space Telescope/WFC3 deep imaging in the Hubble Ultra Deep Field, Astrophys. J. Lett. 714, L79-L83 (2010). https://doi.org/10.1088/2041-8205/714/1/L79   DOI
30 Conselice CJ, The symmetry, color, and morphology of galaxies, Publ. Astron. Soc. Pac. 109, 1251-1255 (1997). https://doi.org/10.1086/134004   DOI
31 Gardner JP, Heap SR, Malumuth EM, Hill RS, Smith EP, Proceedings of the AIP Conference, College Park, MD, USA, 2-4 May 1997.
32 Giavalisco M, Livio M, Bohlin, RC, Macchetto FD, Stecher TP, On the morphology of the HST faint galaxies, Astron. J. 112, 369-377 (1996). https://doi.org/10.1086/118021   DOI
33 Gil de Paz A, Boissier S, Madore BF, Seibert M, Joe YH, et al., The GALEX ultraviolet atlas of nearby galaxies, Astrophys. J. Suppl. Ser. 173, 185-255 (2007). https://doi.org/10.1086/516636   DOI
34 Hibbard JE, Vacca WD, The apparent morphology of peculiar galaxies at intermediate to high redshifts, Astron. J. 114, 1741-1752 (1997). https://doi.org/10.1086/118603   DOI
35 Kent SM, CCD surface photometry of field Galaxies. II - bulge/disk decompositions, Astrophys. J. Suppl. Ser. 59, 115-159 (1985). https://doi.org/10.1086/191066   DOI
36 Kuchinski LE, Freedman WL, Madore BF, Trewhella M, Bohlin RC, et al., Comparing galaxy morphology at ultraviolet and optical wavelengths, Astrophys. J. Suppl. Ser. 131, 441-463 (2000). https://doi.org/10.1086/317371   DOI
37 Kuchinski LE, Madore BF, Freedman WL, Trewhella M, Quantitative morphology of galaxies observed in the ultraviolet, Astron. J. 122, 729-749 (2001). https://doi.org/10.1086/321181   DOI
38 Lauger S, Burgarella D, Buat V, Spectro-morphology of galaxies: a multi-wavelength (UV-R) classification method, Astron. Astrophys. 434, 77-87 (2005). https://doi.org/10.1051/0004-6361:200400138   DOI
39 Overzier RA, Heckman TM, Schiminovich D, Basu-Zych A, Goncalves T, et al., Morphologies of local Lyman break galaxy analogs. II. a comparison with galaxies at z $\simeq$ 2-4 in ACS and WFC3 images of the Hubble Ultra Deep Field, Astrophys. J. 710, 979-991 (2010). https://doi.org/10.1088/0004-637X/710/2/979   DOI
40 O'Connell RW, Proceeding of the AIP Conference, College Park, MD, USA, 2-4 May 1997.
41 Papovich C, Giavalisco M, Dickinson M, Conselice CJ, Ferguson HC, et al., The internal ultraviolet-optical color dispersion: quantifying the morphological K-correction, Astrophys. J. 598, 827-847 (2003). https://doi.org/10.1086/378976   DOI
42 Petrosian V, Surface brightness and evolution of galaxies, Astrophys. J. 209, L1-L5 (1976). https://doi.org/10.1086/182253   DOI
43 Schlegel DJ, Finkbeiner DP, Davis M, Maps of dust infrared emission for use in estimation of reddening and cosmic microwave background radiation foregrounds, Astrophys. J. 500, 525-553 (1998). https://doi.org/10.1086/305772   DOI
44 Sirianni M, Jee MJ, Benitez N, Blakeslee JP, Martel AR, et al., The photometric performance and calibration of the Hubble Space Telescope advanced camera for Surveys, Publ. Astron. Soc. Pac. 117, 1049-1112 (2005). https://doi.org/10.1086/444553   DOI
45 Takamiya M, Galaxy structural parameters: star formation rate and evolution with redshift, Astrophys. J. Suppl. Ser. 122, 109-150 (1999). https://doi.org/10.1086/313216   DOI
46 Taylor-Mager VA, Conselice CJ, Windhorst RA, Jansen RA, Dependence of galaxy structure on rest-frame wavelength and galaxy type, Astrophys. J. 659, 162-187 (2007). https://doi.org/10.1086/511806   DOI
47 Windhorst RA, Taylor VA, Jansen RA, Odewahn SC, Chiarenza CAT, et al., A Hubble Space Telescope survey of the midultraviolet morphology of nearby galaxies, Astrophys. J. Suppl. Ser. 143, 113-158 (2002). https://doi.org/10.1086/341556   DOI
48 van den Bergh S, Cohen JG, Hogg DW, Blandford R, Caltech faint galaxy redshift survey. XIV. galaxy morphology in the Hubble Deep Field (North) and its flanking fields to z =1.2, Astron. J. 120, 2190-2205 (2000). https://doi.org/10.1086/316828   DOI
49 Weinberg S, Gravitation and Cosmology: Principles and Applications of the General Theory of Relativity (John Wiley & Sons, New jersey, 1972).
50 Williams RE, Blacker B, Dickinson M, Van Dyke Dixon W, Ferguson HC, et al., The Hubble Deep Field: observations, data reduction, and galaxy photometry, Astron. J. 112, 1335-1389 (1996). https://doi.org/10.1086/118105   DOI
51 York DG, Adelman J, Anderson Jr. JE, Anderson SF, Annis J, et al., The Sloan Digital Sky Survey: Technical Summary, Astron. J. 120, 1579-1587 (2000). https://doi.org/10.1086/301513   DOI
52 Hogg DW, Distance measures in cosmology, eprint arXiv:astroph/9905116 (1999).
53 Weedman DW, Quasar Astronomy (Cambridge University Press, Cambridge, 1986).
54 Abraham RG, Valdes F, Yee HKC, van den Bergh S, The morphologies of distant galaxies. I: an automated classification system, Astrophys. J. 432, 75-90 (1994). https://doi.org/10.1086/174550   DOI