References
- Broekaert, K., Heyndrickx, M., Herman, L., Devlieghere, F., and Vlaemynck, G. (2011) Seafood quality analysis: molecular identification of dominant microbiota after ice storage on several general growth media. Food Microbiol. 28, 1162-1169. https://doi.org/10.1016/j.fm.2011.03.009
- Carrizosa, E., Benito, M. J., Ruiz-Moyano, S., Hernandez, A., Villalobos, M. D. C., Martín, A., and Cordoba, M. D. G. (2017) Bacterial communities of fresh goat meat packaged in modified atmosphere. Food Microbiol. 65, 57-63. https://doi.org/10.1016/j.fm.2017.01.023
- Casaburi, A., Nasi, A., Ferrocino, I., DiMonaco, R., Mauriello, G., Villani, F., and Ercolini, D. (2011) Spoilage-related activity of Carnobacterium maltaromaticum strains in air-stored and vacuum-packed meat. Appl. Environ. Microb. 77, 7382-7393. https://doi.org/10.1128/AEM.05304-11
- Casaburi, A., Piombino, P., Nychas, G. J., Villani, F., and Ercolini, D. (2015) Bacterial populations and the volatilome associated to meat spoilage. Food Microbiol. 45, 83-102. https://doi.org/10.1016/j.fm.2014.02.002
- Diez, A. M., Urso, R., Rantsiou, K., Jaime, I., Rovira, J., and Cocolin, L. (2008) Spoilage of blood sausages morcilla de Burgos treated with high hydrostatic pressure. Int. J. Food Microbiol. 123, 246-253. https://doi.org/10.1016/j.ijfoodmicro.2008.02.017
- Doulgeraki, A. I., Ercolini, D., Villani, F., and Nychas, G. J. E. (2012) Spoilage microbiota associated to the storage of raw meat in different conditions. Int. J. Food Microbiol. 157, 130-141. https://doi.org/10.1016/j.ijfoodmicro.2012.05.020
- Doulgeraki, A. I., Paramithiotis, S., Kagkli, D. M., and Nychas, G. J. E. (2010) Lactic acid bacteria population dynamics during minced beef storage under aerobic or modified atmosphere packaging conditions. Food Microbiol. 27, 1028-1034. https://doi.org/10.1016/j.fm.2010.07.004
- Ercolini, D., Ferrocino, I., Nasi, A., Ndagijimana, M., Vernocchi, P., La Storia, A., Laghi, L., Mauriello, G., Guerzoni, M. E., and Villani, F. (2011) Monitoring of microbial metabolites and bacterial diversity in beef stored in different packaging conditions. Appl. Environ. Microb. 77, 7372-7381. https://doi.org/10.1128/AEM.05521-11
- Ercolini, D., Russo, F., Nasi, A., Ferranti, P., and Villani, F. (2009) Mesophilic and psychrotrophic bacteria from meat and their spoilage potential in vitro and in beef. Appl. Environ. Microbiol. 75, 1990-2001. https://doi.org/10.1128/AEM.02762-08
- Fairbairn, D. J. and Law, B. A. (1986) Proteinases of psychrotrophic bacteria: Their production, properties, effects and control. J. Dairy Res. 53, 139-177. https://doi.org/10.1017/S0022029900024742
- Grama, L., Ravn, L., Rasch, M., Bruhn, J. B., Christensen, A. B., and Givskov, M. (2002) Food spoilage-interactions between food spoilage bacteria. Int. J. Food Microbiol. 78, 79-97. https://doi.org/10.1016/S0168-1605(02)00233-7
-
Lebert, I., Begot, C., and Leber, A. (1998) Growth of Pseudomonas fluorescens and Pseudomonas fragi in a meat medium as affected by pH (5.8-7.0), water activity (0.97-1.00) and temperature (
$7-25^{\circ}C$ ). Int. J. Food Microbiol. 39, 53-60. https://doi.org/10.1016/S0168-1605(97)00116-5 - Mataragas, M., Drosinos, E. H., Vaidanis, A., and Metaxopoulos, I. (2006) Development of a predictive model for spoilage of cooked cured meat products and its validation under constant and dynamic temperature storage conditions. J. Food Sci. 71, 157-167.
- Nieminen, T. T., Koskinen, K., Laine, P., Hultman, J., Sade, E., Paulin, L., Paloranta, A., Johansson, P., Bjorkroth, J., and Auvinen, P. (2012) Comparison of microbial communities in marinated and unmarinated broiler meat by metagenomics. Int. J. Food Microbiol. 157, 142-149. https://doi.org/10.1016/j.ijfoodmicro.2012.04.016
- Nocker, A., Burr, M., and Camper, A. K. (2007) Genotypic microbial community profiling: A critical technical review. Microbiol. Ecol. 54, 276-289. https://doi.org/10.1007/s00248-006-9199-5
- Nowak, A., Rygala, A., Oltuszak-Walczak, E., and Walczak, P. (2012) The prevalence and some metabolic traits of Brochothrix thermosphacta in meat and meat products packaged in different ways. J. Sci. Food Agric. 92, 1304-1310. https://doi.org/10.1002/jsfa.4701
- Pennacchia, C., Ercolini, D., and Villani, F. (2011) Spoilage-related microbiota associated with chilled beef stored in air or vacuum pack. Food Microbiol. 28, 84-93. https://doi.org/10.1016/j.fm.2010.08.010
- Remenant, B., Jaffres, E., Dousset, X, Pilet, M., and Zagorec, M. (2015) Bacterial spoilers of food: Behavior, fitness and functional properties. Food Microbiol. 45, 45-53. https://doi.org/10.1016/j.fm.2014.03.009
- Russell, S. M. (2009) Understanding poultry products spoilage. WattAgNet.com. http://www.wattagnet.com/articles/4207-understanding-poultry-products-spoilage
- Tuncer, B. and Sireli, U. T. (2008) Microbial growth on broiler carcasses stored at different temperatures after air- or water-chilling. Poultry Sci. 87, 793-799. https://doi.org/10.3382/ps.2007-00057
- von Neubeck, M., Huptas, C., Gluck, C., Krewinkel, M., Stoecke, M., Stressler, T., Fischer, L., Hinrichs, J., Scherer, S., and Wenning, M. (2016) Pseudomonas helleri sp. nov. and Pseudomonas weihenstephanensis sp. nov., isolated from raw cow's milk. Int. J. Syst. Evol. Microbiol. 66, 1163-1173. https://doi.org/10.1099/ijsem.0.000852
- Wang, G., Wang, H., Han, Y., Xing, T., Ye, K., Xu, X., and Zhou, G. (2017) Evaluation of the spoilage potential of bacteria isolated from chilled chicken in vitro and in situ. Food Microbiol. 63, 139-146. https://doi.org/10.1016/j.fm.2016.11.015
- Yoon, S. H., Ha, S. M., Kwon, S., Lim, J., Kim, Y., Seo, H., and Chun, J. (2017) Introducing EzBioCloud: A taxonomically united database of 16S rRNA and whole genome assemblies. Int. J. Syst. Evol. Microbiol. 67, 1613-1617. https://doi.org/10.1099/ijsem.0.001755
Cited by
- Diversity and anaerobic growth of Pseudomonas spp. isolated from modified atmosphere packaged minced beef vol.127, pp.1, 2017, https://doi.org/10.1111/jam.14249
- Misannotations of the genes encoding sugar N ‐formyltransferases vol.29, pp.4, 2020, https://doi.org/10.1002/pro.3807
- Acinetobacter pullicarnis sp. nov. isolated from chicken meat vol.202, pp.4, 2017, https://doi.org/10.1007/s00203-019-01785-y
- Distribution of cold‐resistant bacteria in quick‐frozen dumpling and its inhibition by different antibacterial agents vol.44, pp.9, 2017, https://doi.org/10.1111/jfpp.14710
- The occurrence of Salmonella, extended‐spectrum β‐lactamase producing Escherichia coli and carbapenem resistant non‐fermenting Gram‐negative bacteria in a backyard poultry vol.67, pp.6, 2017, https://doi.org/10.1111/zph.12756
- Evaluation of Antimicrobial Coatings on Preservation and Shelf Life of Fresh Chicken Breast Fillets Under Cold Storage vol.9, pp.9, 2017, https://doi.org/10.3390/foods9091203
- Antibiotic Resistance and Phylogeny of Pseudomonas spp. Isolated over Three Decades from Chicken Meat in the Norwegian Food Chain vol.9, pp.2, 2017, https://doi.org/10.3390/microorganisms9020207
- Microbiota of Chicken Breast and Thigh Fillets Stored under Different Refrigeration Temperatures Assessed by Next-Generation Sequencing vol.10, pp.4, 2017, https://doi.org/10.3390/foods10040765
- Profiles of coagulase-positive and -negative staphylococci in retail pork: prevalence, antimicrobial resistance, enterotoxigenicity, and virulence factors vol.34, pp.4, 2017, https://doi.org/10.5713/ajas.20.0660
- The changing microbiome of poultry meat; from farm to fridge vol.99, pp.None, 2017, https://doi.org/10.1016/j.fm.2021.103823