References
- D. S. Newsome, "Water-gas shift reaction", Catal. Rev., Vol. 21, 1980, p. 275. https://doi.org/10.1080/03602458008067535
- R. D. Cortright, R. R. Davda, and J. A. Dumesic, "Hydrogen from catalytic reforming of biomass-derived hydrocarbons in liquid water", Nature, Vol. 418, 2002, p. 964. https://doi.org/10.1038/nature01009
- N. Chanburanasiri, A. M. Ribeiro, A. E. Rodrigues, A. Arpornwichanop, N. Laosiripojana, P Praserthdam, and S. Assabumrungrat, "Hydrogen production via sorption enhanced steam methane reforming process using Ni/CaO multifunctional catalyst", Ind. Eng. Chem. Res., Vol. 50, 2011, p. 13662. https://doi.org/10.1021/ie201226j
-
E. D. Park, D. Lee, and H. C. Lee, "Recent progress in selective CO removal in a
$H_2$ -rich stream", Catal. Today, Vol. 139, 2009, p. 280. https://doi.org/10.1016/j.cattod.2008.06.027 - J. M. Thomas and W. J. Thomas, "Principles and practice of heterogeneous catalysis", New York VCH, 1997.
-
V. Subramanian, E. S. Gnanakumar, D. W. Jeong, W. B. Han, C. S. Gopinath, and H. S. Roh, "A rationally designed
$CuFe_2O_4$ -mesoporous$Al_2O_3$ composite towards stable performance of high temperature water-gas shift reaction", Chem. Commun., Vol. 49, 2013, p. 11257. https://doi.org/10.1039/c3cc43699c -
P. Panagiotopoulou and D. I. Kondarides, "Effect of morphological characteristics of
$TiO_2$ -supported noble metal catalysts on their activity for the watere gas shift reaction", J. Catal., Vol. 225, 2004, p. 327. https://doi.org/10.1016/j.jcat.2004.04.030 - R. Burch, "Gold catalysts for pure hydrogen production in the water-gas shift reaction: activity, structure and reaction mechanism", Phys. Chem. Chem. Phys., Vol. 8, 2006, p. 5483. https://doi.org/10.1039/B607837K
-
A. Venugopal and M. S. Scurrell, "Low temperature reductive pretreatment of Au/
$Fe_2O_3$ catalysts, TPR/TPO studies and behaviour in the wateregas shift reaction", Appl. Catal. A Gen., Vol. 258, 2004, p. 241. https://doi.org/10.1016/j.apcata.2003.09.017 -
D. W. Jeong, H. S. Potdar, J. O. Shim, W. J. Jang, and H. S. Roh, "
$H_2$ production from a single stage water gas shift reaction over Pt/$CeO_2$ , Pt/$ZrO_2$ , and Pt/$Ce_{(1-x)}Zr_{(x)}O_2$ catalysts", Int. J. Hydrogen Energy, Vol. 38, 2013, p. 4502. https://doi.org/10.1016/j.ijhydene.2013.01.200 - F. Marino, C. Descorme, and D. Duprez, "Supported base metal catalysts for the preferential oxidation of carbon monoxide in the presence of excess hydrogen (PROX)", Appl. Catal. B Environ, Vol. 58, 2005, p. 175. https://doi.org/10.1016/j.apcatb.2004.12.008
-
D. W. Jeong, H. S. Na, J. O. Shim, W. J. Jang, H. S. Roh ,U. H. Jung, and W. L. Yoon, "Hydrogen production from low temperature WGS reaction on co-precipitated Cu-
$CeO_2$ catalysts: An optimization of Cu loading", Int. J. Hydrogen Energy, Vol. 39, 2014, p. 9135. https://doi.org/10.1016/j.ijhydene.2014.04.005 -
G. Aguila, S. Guerrero, and P. Araya, "Influence of the crystalline structure of
$ZrO_2$ on the activity of Cu/$ZrO_2$ catalysts on the water gas shift reaction", Catal. Commun., Vol. 9, 2008, p. 2550. https://doi.org/10.1016/j.catcom.2008.07.011 -
F. Boccuzzi, A. Chiorino, M. Manzoli, D. Andreeva, T. Tabakova, L. Ilieva, and V. Iadakiev, "Gold, silver and copper catalysts supported on
$TiO_2$ for pure hydrogen production", Catal. Today, Vol. 75, 2002, p. 169. https://doi.org/10.1016/S0920-5861(02)00060-3 - S. Nishimura, T. Shishido, J. Ohyama, K. Teramura, A. Takagaki, and T. Tanaka, "In situ observation of the dynamic behavior of Cu-Al-Ox catalysts forwater gas shift reaction during daily start-up andshut-down (DSS)-like operation", Catal. Sci. Technol., Vol. 2, 2012, p. 1685. https://doi.org/10.1039/c2cy20133j
- D. W. Jeong, W. J. Jang, J. O. Shim, W. B. Han, H. S. Roh, U. H. Jung, and W. L. Yoon, "Low-temperature water-gas shift reaction over supported Cu catalysts", Renew Energy, Vol. 65, 2014, p. 102. https://doi.org/10.1016/j.renene.2013.07.035
-
D. W. Jeong, H. S. Na, J. O. Shim, W. J. Jang, and H. S. Roh, "Crucial role for the
$CeO_2$ -$ZrO_2$ support for the low temperature water gas shift reaction over Cu-$CeO_2$ -$ZrO_2$ catalysts", Catal. Sci. Technol, Vol. 5, 2015, p. 3706. https://doi.org/10.1039/C5CY00499C -
J. B. Ko, C. M. Bae, Y. S. Jung, and D. H. Kim, "Cu-
$ZrO_2$ catalysts for water-gas-shift reaction at low temperatures," Catal. Lett., Vol. 105, 2005, p. 157. https://doi.org/10.1007/s10562-005-8685-6 -
L. Jiang, H. Zhu, R. Razzaq, M. Zhu, C. Li, and Z. Li, "Effect of zirconium addition on the structure and properties of CuO/
$CeO_2$ catalysts for high-temperature water-gas shift in an IGCC system", Int. J. Hydrogen Energy, Vol. 37, 2012, p. 15914. https://doi.org/10.1016/j.ijhydene.2012.08.055 -
P. Djinovic, J. Batista, and A. Pintar, "Calcination temperature and CuO loading dependence on CuO-
$CeO_2$ catalyst activity for water-gas shift reaction", Appl. Catal. A Gen., Vol. 347, 2008, p. 23. https://doi.org/10.1016/j.apcata.2008.05.027 - P. Pradhan, A. S. Reddy, R. N. Devi, and S. Chilukuri, "Copper-based catalysts for water gas shift reaction: Influence of support on their catalytic activity", Catal. Today, Vol. 141, 2009, p. 72. https://doi.org/10.1016/j.cattod.2008.06.026