DOI QR코드

DOI QR Code

The Effect of Cu Loading on the Performance of Cu-Ce0.8Zr0.2O2 Catalysts for Single Stage Water Gas Shift Reaction

컴팩트 개질기용 수성가스전이 반응에서 Cu-Ce0.8Zr0.2O2 촉매에 Cu 담지량이 미치는 영향

  • KIM, HAK-MIN (Department of Environmental Engineering, Yonsei University) ;
  • JEON, KYUNG-WON (Department of Environmental Engineering, Yonsei University) ;
  • NA, HYUN-SUK (Department of Environmental Engineering, Yonsei University) ;
  • JANG, WON-JUN (Department of Environmental Engineering, Yonsei University) ;
  • JEONG, DAE-WOON (School of Civil, Environmental and Chemical Engineering, Changwon National University)
  • 김학민 (연세대학교 환경공학) ;
  • 전경원 (연세대학교 환경공학) ;
  • 나현석 (연세대학교 환경공학) ;
  • 장원준 (연세대학교 환경공학) ;
  • 정대운 (창원대학교 토목환경화공융합공학부)
  • Received : 2017.07.25
  • Accepted : 2017.08.30
  • Published : 2017.08.30

Abstract

Single stage water-gas shift reaction has been carried out at a gas hourly space velocity of $150,494h^{-1}$ over $Cu-Ce_{0.8}Zr_{0.2}O_2$ catalysts prepared by a co-precipitation method. Cu loading was optimized to obtain highly active co-precipitated $Cu-Ce_{0.8}Zr_{0.2}O_2$ catalysts for single stage water-gas shift reaction. 80 wt.% $Cu-Ce_{0.8}Zr_{0.2}O_2$ exhibited the excellent catalytic performance as well as 100% $CO_2$ selectivity (CO conversion = 27% at $240^{\circ}C$ for 50 h). The high activity and stability of 80 wt.% $Cu-Ce_{0.8}Zr_{0.2}O_2$ are correlated to low activation energy and large amount of surface Cu atoms.

Keywords

References

  1. D. S. Newsome, "Water-gas shift reaction", Catal. Rev., Vol. 21, 1980, p. 275. https://doi.org/10.1080/03602458008067535
  2. R. D. Cortright, R. R. Davda, and J. A. Dumesic, "Hydrogen from catalytic reforming of biomass-derived hydrocarbons in liquid water", Nature, Vol. 418, 2002, p. 964. https://doi.org/10.1038/nature01009
  3. N. Chanburanasiri, A. M. Ribeiro, A. E. Rodrigues, A. Arpornwichanop, N. Laosiripojana, P Praserthdam, and S. Assabumrungrat, "Hydrogen production via sorption enhanced steam methane reforming process using Ni/CaO multifunctional catalyst", Ind. Eng. Chem. Res., Vol. 50, 2011, p. 13662. https://doi.org/10.1021/ie201226j
  4. E. D. Park, D. Lee, and H. C. Lee, "Recent progress in selective CO removal in a $H_2$-rich stream", Catal. Today, Vol. 139, 2009, p. 280. https://doi.org/10.1016/j.cattod.2008.06.027
  5. J. M. Thomas and W. J. Thomas, "Principles and practice of heterogeneous catalysis", New York VCH, 1997.
  6. V. Subramanian, E. S. Gnanakumar, D. W. Jeong, W. B. Han, C. S. Gopinath, and H. S. Roh, "A rationally designed $CuFe_2O_4$-mesoporous $Al_2O_3$ composite towards stable performance of high temperature water-gas shift reaction", Chem. Commun., Vol. 49, 2013, p. 11257. https://doi.org/10.1039/c3cc43699c
  7. P. Panagiotopoulou and D. I. Kondarides, "Effect of morphological characteristics of $TiO_2$-supported noble metal catalysts on their activity for the watere gas shift reaction", J. Catal., Vol. 225, 2004, p. 327. https://doi.org/10.1016/j.jcat.2004.04.030
  8. R. Burch, "Gold catalysts for pure hydrogen production in the water-gas shift reaction: activity, structure and reaction mechanism", Phys. Chem. Chem. Phys., Vol. 8, 2006, p. 5483. https://doi.org/10.1039/B607837K
  9. A. Venugopal and M. S. Scurrell, "Low temperature reductive pretreatment of Au/$Fe_2O_3$ catalysts, TPR/TPO studies and behaviour in the wateregas shift reaction", Appl. Catal. A Gen., Vol. 258, 2004, p. 241. https://doi.org/10.1016/j.apcata.2003.09.017
  10. D. W. Jeong, H. S. Potdar, J. O. Shim, W. J. Jang, and H. S. Roh, "$H_2$ production from a single stage water gas shift reaction over Pt/$CeO_2$, Pt/$ZrO_2$, and Pt/$Ce_{(1-x)}Zr_{(x)}O_2$ catalysts", Int. J. Hydrogen Energy, Vol. 38, 2013, p. 4502. https://doi.org/10.1016/j.ijhydene.2013.01.200
  11. F. Marino, C. Descorme, and D. Duprez, "Supported base metal catalysts for the preferential oxidation of carbon monoxide in the presence of excess hydrogen (PROX)", Appl. Catal. B Environ, Vol. 58, 2005, p. 175. https://doi.org/10.1016/j.apcatb.2004.12.008
  12. D. W. Jeong, H. S. Na, J. O. Shim, W. J. Jang, H. S. Roh ,U. H. Jung, and W. L. Yoon, "Hydrogen production from low temperature WGS reaction on co-precipitated Cu-$CeO_2$ catalysts: An optimization of Cu loading", Int. J. Hydrogen Energy, Vol. 39, 2014, p. 9135. https://doi.org/10.1016/j.ijhydene.2014.04.005
  13. G. Aguila, S. Guerrero, and P. Araya, "Influence of the crystalline structure of $ZrO_2$ on the activity of Cu/$ZrO_2$ catalysts on the water gas shift reaction", Catal. Commun., Vol. 9, 2008, p. 2550. https://doi.org/10.1016/j.catcom.2008.07.011
  14. F. Boccuzzi, A. Chiorino, M. Manzoli, D. Andreeva, T. Tabakova, L. Ilieva, and V. Iadakiev, "Gold, silver and copper catalysts supported on $TiO_2$ for pure hydrogen production", Catal. Today, Vol. 75, 2002, p. 169. https://doi.org/10.1016/S0920-5861(02)00060-3
  15. S. Nishimura, T. Shishido, J. Ohyama, K. Teramura, A. Takagaki, and T. Tanaka, "In situ observation of the dynamic behavior of Cu-Al-Ox catalysts forwater gas shift reaction during daily start-up andshut-down (DSS)-like operation", Catal. Sci. Technol., Vol. 2, 2012, p. 1685. https://doi.org/10.1039/c2cy20133j
  16. D. W. Jeong, W. J. Jang, J. O. Shim, W. B. Han, H. S. Roh, U. H. Jung, and W. L. Yoon, "Low-temperature water-gas shift reaction over supported Cu catalysts", Renew Energy, Vol. 65, 2014, p. 102. https://doi.org/10.1016/j.renene.2013.07.035
  17. D. W. Jeong, H. S. Na, J. O. Shim, W. J. Jang, and H. S. Roh, "Crucial role for the $CeO_2$-$ZrO_2$ support for the low temperature water gas shift reaction over Cu-$CeO_2$-$ZrO_2$ catalysts", Catal. Sci. Technol, Vol. 5, 2015, p. 3706. https://doi.org/10.1039/C5CY00499C
  18. J. B. Ko, C. M. Bae, Y. S. Jung, and D. H. Kim, "Cu-$ZrO_2$ catalysts for water-gas-shift reaction at low temperatures," Catal. Lett., Vol. 105, 2005, p. 157. https://doi.org/10.1007/s10562-005-8685-6
  19. L. Jiang, H. Zhu, R. Razzaq, M. Zhu, C. Li, and Z. Li, "Effect of zirconium addition on the structure and properties of CuO/$CeO_2$ catalysts for high-temperature water-gas shift in an IGCC system", Int. J. Hydrogen Energy, Vol. 37, 2012, p. 15914. https://doi.org/10.1016/j.ijhydene.2012.08.055
  20. P. Djinovic, J. Batista, and A. Pintar, "Calcination temperature and CuO loading dependence on CuO-$CeO_2$ catalyst activity for water-gas shift reaction", Appl. Catal. A Gen., Vol. 347, 2008, p. 23. https://doi.org/10.1016/j.apcata.2008.05.027
  21. P. Pradhan, A. S. Reddy, R. N. Devi, and S. Chilukuri, "Copper-based catalysts for water gas shift reaction: Influence of support on their catalytic activity", Catal. Today, Vol. 141, 2009, p. 72. https://doi.org/10.1016/j.cattod.2008.06.026