Browse > Article
http://dx.doi.org/10.7316/KHNES.2017.28.4.345

The Effect of Cu Loading on the Performance of Cu-Ce0.8Zr0.2O2 Catalysts for Single Stage Water Gas Shift Reaction  

KIM, HAK-MIN (Department of Environmental Engineering, Yonsei University)
JEON, KYUNG-WON (Department of Environmental Engineering, Yonsei University)
NA, HYUN-SUK (Department of Environmental Engineering, Yonsei University)
JANG, WON-JUN (Department of Environmental Engineering, Yonsei University)
JEONG, DAE-WOON (School of Civil, Environmental and Chemical Engineering, Changwon National University)
Publication Information
Transactions of the Korean hydrogen and new energy society / v.28, no.4, 2017 , pp. 345-351 More about this Journal
Abstract
Single stage water-gas shift reaction has been carried out at a gas hourly space velocity of $150,494h^{-1}$ over $Cu-Ce_{0.8}Zr_{0.2}O_2$ catalysts prepared by a co-precipitation method. Cu loading was optimized to obtain highly active co-precipitated $Cu-Ce_{0.8}Zr_{0.2}O_2$ catalysts for single stage water-gas shift reaction. 80 wt.% $Cu-Ce_{0.8}Zr_{0.2}O_2$ exhibited the excellent catalytic performance as well as 100% $CO_2$ selectivity (CO conversion = 27% at $240^{\circ}C$ for 50 h). The high activity and stability of 80 wt.% $Cu-Ce_{0.8}Zr_{0.2}O_2$ are correlated to low activation energy and large amount of surface Cu atoms.
Keywords
Compact reformer; Water gas shift reaction; $Cu-Ce_{0.8}Zr_{0.2}O_2$; Cu loading;
Citations & Related Records
연도 인용수 순위
  • Reference
1 D. W. Jeong, H. S. Na, J. O. Shim, W. J. Jang, H. S. Roh ,U. H. Jung, and W. L. Yoon, "Hydrogen production from low temperature WGS reaction on co-precipitated Cu-$CeO_2$ catalysts: An optimization of Cu loading", Int. J. Hydrogen Energy, Vol. 39, 2014, p. 9135.   DOI
2 G. Aguila, S. Guerrero, and P. Araya, "Influence of the crystalline structure of $ZrO_2$ on the activity of Cu/$ZrO_2$ catalysts on the water gas shift reaction", Catal. Commun., Vol. 9, 2008, p. 2550.   DOI
3 F. Boccuzzi, A. Chiorino, M. Manzoli, D. Andreeva, T. Tabakova, L. Ilieva, and V. Iadakiev, "Gold, silver and copper catalysts supported on $TiO_2$ for pure hydrogen production", Catal. Today, Vol. 75, 2002, p. 169.   DOI
4 S. Nishimura, T. Shishido, J. Ohyama, K. Teramura, A. Takagaki, and T. Tanaka, "In situ observation of the dynamic behavior of Cu-Al-Ox catalysts forwater gas shift reaction during daily start-up andshut-down (DSS)-like operation", Catal. Sci. Technol., Vol. 2, 2012, p. 1685.   DOI
5 D. W. Jeong, W. J. Jang, J. O. Shim, W. B. Han, H. S. Roh, U. H. Jung, and W. L. Yoon, "Low-temperature water-gas shift reaction over supported Cu catalysts", Renew Energy, Vol. 65, 2014, p. 102.   DOI
6 D. W. Jeong, H. S. Na, J. O. Shim, W. J. Jang, and H. S. Roh, "Crucial role for the $CeO_2$-$ZrO_2$ support for the low temperature water gas shift reaction over Cu-$CeO_2$-$ZrO_2$ catalysts", Catal. Sci. Technol, Vol. 5, 2015, p. 3706.   DOI
7 J. B. Ko, C. M. Bae, Y. S. Jung, and D. H. Kim, "Cu-$ZrO_2$ catalysts for water-gas-shift reaction at low temperatures," Catal. Lett., Vol. 105, 2005, p. 157.   DOI
8 L. Jiang, H. Zhu, R. Razzaq, M. Zhu, C. Li, and Z. Li, "Effect of zirconium addition on the structure and properties of CuO/$CeO_2$ catalysts for high-temperature water-gas shift in an IGCC system", Int. J. Hydrogen Energy, Vol. 37, 2012, p. 15914.   DOI
9 P. Djinovic, J. Batista, and A. Pintar, "Calcination temperature and CuO loading dependence on CuO-$CeO_2$ catalyst activity for water-gas shift reaction", Appl. Catal. A Gen., Vol. 347, 2008, p. 23.   DOI
10 P. Pradhan, A. S. Reddy, R. N. Devi, and S. Chilukuri, "Copper-based catalysts for water gas shift reaction: Influence of support on their catalytic activity", Catal. Today, Vol. 141, 2009, p. 72.   DOI
11 A. Venugopal and M. S. Scurrell, "Low temperature reductive pretreatment of Au/$Fe_2O_3$ catalysts, TPR/TPO studies and behaviour in the wateregas shift reaction", Appl. Catal. A Gen., Vol. 258, 2004, p. 241.   DOI
12 D. S. Newsome, "Water-gas shift reaction", Catal. Rev., Vol. 21, 1980, p. 275.   DOI
13 R. D. Cortright, R. R. Davda, and J. A. Dumesic, "Hydrogen from catalytic reforming of biomass-derived hydrocarbons in liquid water", Nature, Vol. 418, 2002, p. 964.   DOI
14 N. Chanburanasiri, A. M. Ribeiro, A. E. Rodrigues, A. Arpornwichanop, N. Laosiripojana, P Praserthdam, and S. Assabumrungrat, "Hydrogen production via sorption enhanced steam methane reforming process using Ni/CaO multifunctional catalyst", Ind. Eng. Chem. Res., Vol. 50, 2011, p. 13662.   DOI
15 J. M. Thomas and W. J. Thomas, "Principles and practice of heterogeneous catalysis", New York VCH, 1997.
16 V. Subramanian, E. S. Gnanakumar, D. W. Jeong, W. B. Han, C. S. Gopinath, and H. S. Roh, "A rationally designed $CuFe_2O_4$-mesoporous $Al_2O_3$ composite towards stable performance of high temperature water-gas shift reaction", Chem. Commun., Vol. 49, 2013, p. 11257.   DOI
17 P. Panagiotopoulou and D. I. Kondarides, "Effect of morphological characteristics of $TiO_2$-supported noble metal catalysts on their activity for the watere gas shift reaction", J. Catal., Vol. 225, 2004, p. 327.   DOI
18 R. Burch, "Gold catalysts for pure hydrogen production in the water-gas shift reaction: activity, structure and reaction mechanism", Phys. Chem. Chem. Phys., Vol. 8, 2006, p. 5483.   DOI
19 D. W. Jeong, H. S. Potdar, J. O. Shim, W. J. Jang, and H. S. Roh, "$H_2$ production from a single stage water gas shift reaction over Pt/$CeO_2$, Pt/$ZrO_2$, and Pt/$Ce_{(1-x)}Zr_{(x)}O_2$ catalysts", Int. J. Hydrogen Energy, Vol. 38, 2013, p. 4502.   DOI
20 F. Marino, C. Descorme, and D. Duprez, "Supported base metal catalysts for the preferential oxidation of carbon monoxide in the presence of excess hydrogen (PROX)", Appl. Catal. B Environ, Vol. 58, 2005, p. 175.   DOI
21 E. D. Park, D. Lee, and H. C. Lee, "Recent progress in selective CO removal in a $H_2$-rich stream", Catal. Today, Vol. 139, 2009, p. 280.   DOI