DOI QR코드

DOI QR Code

Hydrothermal Synthesis of 6mol% Yttria Stabilized Cubic ZrO2 Nano Powders

이트리아 안정화 지르코니아 나노 분말 합성

  • Lee, Jae-Hoon (Department of Mechatronics Engineering, Kyungnam University) ;
  • Bae, Sung-Hwan (Department of Nano Science and Engineering, Kyungnam University)
  • 이재훈 (경남대학교 메카트로닉스공학과) ;
  • 배성환 (경남대학교 나노신소재공학과)
  • Received : 2017.06.23
  • Accepted : 2017.08.04
  • Published : 2017.08.27

Abstract

YSZ (Yttria-stabilized zirconia) is a ceramic material that is used for electronic and structural materials due to its excellent mechanical properties and specific electrical characteristics according to the Yttrium addition. Hydrothermal synthesis has several advantages such as fine particle size, uniform crystalline phase, fast reaction time, low process temperature and good dispersion condition. In order to synthesize YSZ nanoparticles with high crystallinity, hydrothermal synthesis was performed at various concentrations of NaOH. The hydrothermal process was held at a low temperature ($100^{\circ}C$), with a short process time (2,4,8 hours); the acidity or alkalinity of solution was controlled in a range of pH 2~12 by addition of NaOH. The optimum condition was found to be pH 12, at which high solubility levels of Y(OH) and Zr(OH) were reported. The synthesized nano powder showed high crystallinity and homogenous composition, and uniform particle size of about 10 nm.

Keywords

References

  1. S. K. Kang, D. S. So, B. K. Choi, R. H. Song, J. Korean Ind. Eng. Chem., 6, 52 (2003).
  2. N. Q. Minh, T. Takahashi, Science and Technology of Ceramic Fuel Cells, p. 209-210, Elsevier, Netherlands (1995).
  3. N. Q. Minh, Solid State Ionics., 174, 271 (2004). https://doi.org/10.1016/j.ssi.2004.07.042
  4. Y. Ji, J. A. Kilner and M. F. Carolan, Solid State Ionics., 176, 937 (2005). https://doi.org/10.1016/j.ssi.2004.11.019
  5. E. C. Subbarao, Solid State Ionics., 11, 317 (1984). https://doi.org/10.1016/0167-2738(84)90024-9
  6. W. Pyda, K. Haberko and M. M. Buko, J. Am. Ceram. Soc., 74, 2622 (1991). https://doi.org/10.1111/j.1151-2916.1991.tb06810.x
  7. H. Nishizawa, N. Yamasaki, K. Matsuoka and H. Mitsushio, J. Am. Ceram. Soc., 65, 343 (1982). https://doi.org/10.1111/j.1151-2916.1982.tb10467.x
  8. O. I. V and A. V Ragulya, J. Am. Ceram. Soc., 40, 1360 (2004).
  9. E. Tani, M. Yoshimura and S. Smiya, J. Am. Ceram. Soc., 66, 11 (1983). https://doi.org/10.1111/j.1151-2916.1983.tb09958.x
  10. H. Kumazawa, T. Inoue, and E. Sada, Chem. Eng. J. Biochem. Eng. J., 55, 93 (1994). https://doi.org/10.1016/0923-0467(94)87011-X
  11. V. V. Silva, F. S. Lameiras and R. Z. Domingues, Ceram. Int., 27, 615 (2001). https://doi.org/10.1016/S0272-8842(00)00122-X
  12. A. Feinberg and C. H. Perry, J. Phys. Chem. Solids, 42, 513 (1981). https://doi.org/10.1016/0022-3697(81)90032-9
  13. K. Matsui, H. Suzuki and M. Ohagai, J. Am. Ceram. Soc., 78, 146 (1995). https://doi.org/10.1111/j.1151-2916.1995.tb08374.x
  14. J. H. Ryu, H. S. Kil, J. H. Song, D. Y, Lim and S. B. Cho, Powder Technol., 221, 228 (2012). https://doi.org/10.1016/j.powtec.2012.01.006
  15. M. Yoshimura and S. S miya, Mater. Chem. Phys., 61, 1 (1999). https://doi.org/10.1016/S0254-0584(99)00104-2
  16. H. J. Noh, J. K. Lee, D. S. Seo, K. H. Hwang, J. Korean. Ceram. Soc., 39, 308 (2002). https://doi.org/10.4191/KCERS.2002.39.3.308
  17. L. Helm and A. E. Merbach, Chem. Rev., 105, 1923 (2005). https://doi.org/10.1021/cr030726o
  18. G. T. Mamott, P. Barnes, S. E. Tarling, S. L. Jones and C. J. Norman, J. Mater. Sci., 26, 4054 (1991). https://doi.org/10.1007/BF02402946
  19. J. H. Adair, H. G. Krarup, S. Venigalla and T. Tsukada, Mater. Res. Soc. Symp. Proc., 432, 101 (1997).
  20. R. A. Kimel and J. H. Adair, J. Am. Ceram. Soc., 88, 1133 (2005). https://doi.org/10.1111/j.1551-2916.2005.00226.x
  21. T. Tsukada, S. Venigalla, A. A. Morrone and J. H. Adair, J. Am. Ceram. Soc., 82, 1169 (1999).
  22. W. S. Kim, J. Korean Ind. Eng. Chem., 10, 9 (2007).
  23. C. G. Kontoyannis and M. Orkoula, J. Mater. Sci., 29, 5316 (1994). https://doi.org/10.1007/BF01171541
  24. Christopher J. Szepesi and H. Adair, J. Am. Ceram. Soc., 94, 4239 (2011). https://doi.org/10.1111/j.1551-2916.2011.04806.x