DOI QR코드

DOI QR Code

Effect of Reduction Temperature on the Microstructure and Thermoelectric Properties of TAGS-85 Compounds

  • Madavali, Babu (Division of Advanced Materials Engineering & Institute for Rare Metals, Kongju National University) ;
  • Han, Seung-Tek (Division of Advanced Materials Engineering & Institute for Rare Metals, Kongju National University) ;
  • Shin, Dong-Won (Division of Advanced Materials Engineering & Institute for Rare Metals, Kongju National University) ;
  • Hong, Soon-Jik (Division of Advanced Materials Engineering & Institute for Rare Metals, Kongju National University) ;
  • Lee, Kap-Ho (Department of Materials Science & Engineering, Chungnam National University)
  • Received : 2017.07.31
  • Accepted : 2017.08.04
  • Published : 2017.08.27

Abstract

In this work, the effects of hydrogen reduction on the microstructure and thermoelectric properties of $(GeTe)_{0.85}(AgSbTe_2)_{0.15}$ (TAGS-85) were studied by a combination of gas atomization and spark plasma sintering. The crystal structure and microstructure of TAGS-85 were characterized by X-ray diffraction(XRD) and scanning electron microscopy (SEM). The oxygen content of both powders and bulk samples were found to decrease with increasing reduction temperature. The grain size gradually increased with increasing reduction temperature due to adhesion of fine grains in a temperature range of 350 to $450^{\circ}C$. The electrical resistivity was found to increase with reduction temperature due to a decrease in carrier concentration. The Seebeck coefficient decreased with increasing reduction temperature and was in good agreement with the carrier concentration and carrier mobility. The maximum power factor, $3.3{\times}10^{-3}W/mK^2$, was measured for the non-reduction bulk TAGS-85 at $450^{\circ}C$.

Keywords

References

  1. T. M. Tritt, Science, 283, 804 (1999). https://doi.org/10.1126/science.283.5403.804
  2. T. M. Tritt, H. Bottner and L. D. Chen, MRS Bull., 33, 366 (2008). https://doi.org/10.1557/mrs2008.73
  3. K. S. Lee, S. Seo, S. Jin, B. Y. Yoo and Y. K. Jeong, Korean J. Mater. Res., 22, 6 (2012).
  4. J.-C. Choi, S.-H. Chang, Y.-H. Cha and I.-H. Oh, Korean J. Mater. Res., 18, 357 (2008). https://doi.org/10.3740/MRSK.2008.18.7.357
  5. R. Venkatasubramanian, E. Siivola, T. Colpitts and B. O'Quinn, Nature, 413, 597 (2001). https://doi.org/10.1038/35098012
  6. B. Zhang, X. Ji, J. He and T. M. Tritt, Appl. Phys. Lett., 89, 163114 (2006). https://doi.org/10.1063/1.2363954
  7. H. S. Kim, P. Dharmaiah, B. Madavali, R. Ott, K. H. Lee and S. J. Hong, Acta Mater., 128, 53 (2017).
  8. B. C. Sales, D. Mandrus, B. C. Chakoumakos, V. Keppens and J. R. Thompson, Phys. Rev. B, 56, 15081 (1997). https://doi.org/10.1103/PhysRevB.56.15081
  9. S. H. Yang, T. J. Zhu, T. Sun, J. He, S. N. Zhang and X. B. Zhao, Nanotechnology., 19, 245707 (2008). https://doi.org/10.1088/0957-4484/19/24/245707
  10. Y. Chen, T. J. Zhu, S. H. Yang, S. N. Zhang, W. Miao and V. B. Zhao, J. Electron. Mater., 39, 1719 (2010). https://doi.org/10.1007/s11664-010-1202-8
  11. X. A. Fan, J. Y. Yang, R. G. Chen, H. S. Yun, W. Zhu, S. Q. Bao and X. K. Duan, J. Phys.D: Appl. Phys., 39, 740 (2006). https://doi.org/10.1088/0022-3727/39/4/021
  12. M. H. Bhuiyan, T. S. Kim, J. M. Koo and S. J. Hong, J. Alloys Compd., 590, 1722 (2011).
  13. B. S. Kim, I. H. Kim, J. K. Lee, B. K. Min, M. W. Oh, S. D. Park, H. W. Lee and M. H. Kim, Electron. Mater. Lett., 6, 181 (2012).
  14. B. A. Cook, J. L. Harrinja, S. H. Han and B. J. Beaudry, J. Appl. Phys., 72, 1423 (1992). https://doi.org/10.1063/1.351702
  15. S. J. Hong and B. S. Chun, Mater. Sci. Eng. A, 356, 345 (2003). https://doi.org/10.1016/S0921-5093(03)00147-3