DOI QR코드

DOI QR Code

Synthesis and Optical Property of BaTiO3 Nanoparticles Using a Salt-assisted Ultrasonic Spray Pyrolysis Process

염 보조 초음파 분무 열분해 공정을 이용한 BaTiO3 나노입자의 합성과 광학적 성질

  • Hwangbo, Young (Department of Materials Science and Engineering, Seoul National University of Science and Technology) ;
  • Lee, Young-In (Department of Materials Science and Engineering, Seoul National University of Science and Technology)
  • 황보영 (서울과학기술대학교 신소재공학과) ;
  • 이영인 (서울과학기술대학교 신소재공학과)
  • Received : 2017.08.14
  • Accepted : 2017.08.21
  • Published : 2017.08.28

Abstract

The structural formation of inorganic nanoparticles dispersed in polymer matrices is a key technology for producing advanced nanocomposites with a unique combination of optical, electrical, and mechanical properties. Barium titanate ($BaTiO_3$) nanoparticles are attractive for increasing the refractive index and dielectric constant of polymer nanocomposites. Current synthesis processes for $BaTiO_3$ nanoparticles require expensive precursors or organic solvents, complicated steps, and long reaction times. In this study, we demonstrate a simple and continuous approach for synthesizing $BaTiO_3$ nanoparticles based on a salt-assisted ultrasonic spray pyrolysis method. This process allows the synthesis of $BaTiO_3$ nanoparticles with diameters of 20-50 nm and a highly crystalline tetragonal structure. The optical properties and photocatalytic activities of the nanoparticles show that they are suitable for use as fillers in various nanocomposites.

Keywords

References

  1. J. G. Liu and M. Ued: J. Mater. Chem., 19 (2009) 8907. https://doi.org/10.1039/b909690f
  2. P. Tao, Y. Li, A. Rungta, A. Viswanath, J. Gao, B. C. Benicewicz, R. W. Siegel and L. S. Schadler: J. Mater. Chem., 21 (2011) 18623. https://doi.org/10.1039/c1jm13093e
  3. C. Liu, T. J. Hajagos, D. Chen, Y. Chen, D. Kishpaugh and Q. Pei: ACS Appl. Mater. Interfaces, 8 (2016) 4795. https://doi.org/10.1021/acsami.6b00743
  4. T. Higashihara and M. Ueda: Macromolecules, 48 (2015) 1915. https://doi.org/10.1021/ma502569r
  5. S. Maeda, M. Fujita, N. Idota, K. Matsukawa and Y. Sugahara: ACS Appl. Mater. Interfaces, 8 (2016) 34762. https://doi.org/10.1021/acsami.6b10427
  6. J. Lott, C. Xia, L. Kosnosky, C. Weder and J. Shan: Adv. Mater., 20 (2008) 3649. https://doi.org/10.1002/adma.200800531
  7. K. Abe, D. Nagao, A. Watanabe and M. Konno: Polym. Int., 62 (2013) 141. https://doi.org/10.1002/pi.4285
  8. G. S. Liou, P. H. Lin, H. J. Yen, Y. Y. Yu and W. C. Chen: Polym. Int., 48 (2010) 1433.
  9. M. Niederberger, N. Pinna, J. Polleux and M. Antonietti: Angew. Chem., 116 (2004) 2320. https://doi.org/10.1002/ange.200353300
  10. M. L. Moreira, G. P. Mambrini, D. P. Volanti, E. R. Leite, M. O. Orlandi, P. S. Pizani, V. R. Mastelaro, C. O. Paiva- Santos, E. Longo and J. A. Varela: Chem. Mater., 20 (2008) 5381. https://doi.org/10.1021/cm801638d
  11. S. I. Ohara, A. Kondo, H. Shimoda, K. Sato, H. Abe and M. Naito: Mater. Lett., 62 (2008) 2957. https://doi.org/10.1016/j.matlet.2008.01.083
  12. J. W. Overcash and K. S. Suslick: Chem. Mater., 27 (2015) 3564. https://doi.org/10.1021/acs.chemmater.5b00766
  13. J. H. Bang and K. S. Suslick: Adv. Mater., 22 (2010) 1039. https://doi.org/10.1002/adma.200904093
  14. K. K. Lee, Y. C. Kang, K. Y. Jung and J. H. Kim: J. Alloys. Compd., 395 (2005) 280. https://doi.org/10.1016/j.jallcom.2004.11.033
  15. Y. Itoh, I. W. Lenggoro, K. Okuyama, L. Madler and S. E. Pratsinis: J. Nanopart. Res., 5 (2003) 191. https://doi.org/10.1023/A:1025565614632
  16. H. Yoneyama, Y. Toyoguchi and H. Tamura: J. Phys. Chem., 76 (1972) 3460. https://doi.org/10.1021/j100667a027
  17. S. Saha, T. P. Sinha and A. Mookerjee: Phys. Rev. B, 62 (2000) 8828. https://doi.org/10.1103/PhysRevB.62.8828