DOI QR코드

DOI QR Code

Luminescence Properties of InP/ZnS Quantum Dots depending on InP Core synthesis Temperature

InP 코어 합성온도에 따른 InP/ZnS의 코어/쉘 양자점의 발광특성

  • Seo, Han Wook (Korea Institute for Rare Metals, Korea Institute of Industrial Technology) ;
  • Jeong, Da-Woon (Korea Institute for Rare Metals, Korea Institute of Industrial Technology) ;
  • Kim, Min Young (Korea Institute for Rare Metals, Korea Institute of Industrial Technology) ;
  • Hyun, Seoung Kyun (Department of Material progress and Engineering, Inha University) ;
  • On, Ji Sun (Korea Institute for Rare Metals, Korea Institute of Industrial Technology) ;
  • Kim, Bum Sung (Korea Institute for Rare Metals, Korea Institute of Industrial Technology)
  • 서한욱 (한국생산기술연구원 한국희소금속산업센터) ;
  • 정다운 (한국생산기술연구원 한국희소금속산업센터) ;
  • 김민영 (한국생산기술연구원 한국희소금속산업센터) ;
  • 현승균 (인하대학교 재료공정공학부) ;
  • 온지선 (한국생산기술연구원 한국희소금속산업센터) ;
  • 김범성 (한국생산기술연구원 한국희소금속산업센터)
  • Received : 2017.08.10
  • Accepted : 2017.08.16
  • Published : 2017.08.28

Abstract

In this study, we investigate the optical properties of InP/ZnS core/shell quantum dots (QDs) by controlling the synthesis temperature of InP. The size of InP determined by the empirical formula tends to increase with temperature: the size of InP synthesized at $140^{\circ}C$ and $220^{\circ}C$ is 2.46 nm and 4.52 nm, respectively. However, the photoluminescence (PL) spectrum of InP is not observed because of the formation of defects on the InP surface. The growth of InP is observed during the deposition of the shell (ZnS) on the synthesized InP, which is ended up with green-red PL spectrum. We can adjust the PL spectrum and absorption spectrum of InP/ZnS by simply adjusting the core temperature. Thus, we conclude that there exists an optimum shell thickness for the QDs according to the size.

Keywords

References

  1. C. B. Murray, D. J. Noms and M. G. Bawendi: J. Am. Chem. Soc., 115 (1993) 8706. https://doi.org/10.1021/ja00072a025
  2. V. L. Colvin, M. C. Schlamp and A. P. Alivisatos: Nature, 370 (1994) 354. https://doi.org/10.1038/370354a0
  3. H. S. Hong, K. S. Park, C. G. Lee, B. S. Kim, L. S. Kang and Y. H. Jin: J. Korean Powder Metall. Inst., 19 (2012) 6. https://doi.org/10.4150/KPMI.2012.19.1.006
  4. O. I. Micic, C. J. Curtis, K. M. Jones, J. R. Sprague and A. J. Nozik: J. Phys. Chem., 98 (1994) 4966. https://doi.org/10.1021/j100070a004
  5. J. Lovrić, S. J. Cho, F. M. Winnik and D. Maysinger: Chem. & Bio., 12 (2005) 1227. https://doi.org/10.1016/j.chembiol.2005.09.008
  6. S. Tamang, C. Lincheneau, Y. Hermans, S. Jeong and P. Reiss: Chem. Mater., 28 (2016) 2491. https://doi.org/10.1021/acs.chemmater.5b05044
  7. O. I. Micic, H. M. Cheong, H. Fu, A. Zunger, J. R. Sprague, A. Mascarenhas and A. J. Nozik: J. Phys. Chem. B, 101 (1997) 4904. https://doi.org/10.1021/jp9704731
  8. S. Haubold, M. Haase, A. Kornowski and H. Weller: Chem. Phys. Chem., 2 (2001) 331. https://doi.org/10.1002/1439-7641(20010518)2:5<331::AID-CPHC331>3.0.CO;2-0
  9. J. D. Dow and R. E. Allen: J. Vac. Sci. & Tech., 20 (1982) 659. https://doi.org/10.1116/1.571620
  10. S. Adam, D. V. Talapin, H. Borchert, A. Lobo, C. McGinley, A. R. B. de Castro, M. Haase, H. Weller and T. Moller: J. Chem. Phys., 123 (2005) 084706. https://doi.org/10.1063/1.2004901
  11. W. S. Song, H. S. Lee, J. C. Lee, D. S. Jang, Y. Choi, M. Choi and H. Yang: J. Nanoparticle. Res., 15 (2013) 1750. Zn https://doi.org/10.1007/s11051-013-1750-y
  12. P. Reiss, M. Protiere and L. Li: Small Mol., 5 (2009) 154. https://doi.org/10.1002/smll.200800841
  13. H. W. Seo, D. W. Jung, B. Lee, S. K. Hyun and B. S. Kim: J. Korean Powder Metall. Inst., 24 (2017) 451.
  14. J. R. Dethlefsen and A. Dossing: Nano lett., 11 (2011) 1964. https://doi.org/10.1021/nl200211n
  15. X. Yang, D. Zhao, K. S. Leck, S. T. Tan, Y. X. Tang, J. Zhao, H. V. Demir and X. W. Sun: Adv. Mater., 24 (2012) 4180. https://doi.org/10.1002/adma.201104990
  16. K. Kim, D. Yoo, H. Choi, S. Tamang, J. H. Ko, S. Kim, Y. H. Kim and S. Jeong: Angew. Chem. Int. Ed., 55 (2016) 3714. https://doi.org/10.1002/anie.201600289

Cited by

  1. Study on Surface-defect Passivation of InP System Quantum Dots by Photochemical Method vol.24, pp.6, 2017, https://doi.org/10.4150/KPMI.2017.24.6.489