DOI QR코드

DOI QR Code

Numerical Simulation of a Gun-launched Projectile Considering Rifled-gun Tube

포신의 강선을 고려한 포 발사 해석

  • 주근수 (한국과학기술원 기계공학과) ;
  • 허훈 (한국과학기술원 기계공학과) ;
  • 정영혁 (풍산방산기술연구원) ;
  • 김주영 (풍산방산기술연구원) ;
  • 서송원 (풍산방산기술연구원)
  • Received : 2016.11.24
  • Accepted : 2017.05.24
  • Published : 2017.09.01

Abstract

This paper is concerned with numerical simulation of a gun-launched projectile considering a rifled gun-tube. Gun-launched conditions induce dynamic behaviors, such as high pressure and high speed rotation. A projectile and its internal electronic components may be damaged in such harsh environments. Hence, it is necessary to perform numerical simulation of a gun-launched projectile to predict its dynamic behaviors and stability. In this work, preceding research studies on gun-launched projectiles are investigated, and the simulation method is developed to rotate the projectile through between its rotating band and a rifled-gun tube. The proposed method is verified by comparison with experimental results, and the dynamic behaviors and stability of the projectile are evaluated under gun-launched conditions.

본 논문에서는 포신의 강선을 고려한 포 발사 해석기법을 다룬다. 포 발사 환경에서 탄두는 고충격 및 고회전의 동적 거동이 발생한다. 이러한 동적 거동에서 탄두 및 탄두 내 전자 장비가 손상되는 사례가 발생하고 있다. 따라서 포 발사 환경에서 탄두의 동적 거동 분석 및 생존성 평가를 위한 포 발사 해석기법의 개발이 필요한 실정이다. 본 논문에서는 앞서 선행연구자들의 단순화된 포 발사 해석기법을 개선하여, 포신의 강선과 탄대의 접촉에 따른 탄두의 회전을 구현할 수 있는 포 발사 해석기법을 개발하였다. 개발된 포 발사 해석기법은 실험결과와 비교를 통하여 검증하였으며, 제안된 해석기법을 이용하여 포 발사 시 탄두의 동적 거동 및 생존성을 평가하였다.

Keywords

References

  1. Chowdhury, M., Frydman, A. M. R., Cordes, J., Reinhardt, L., and Carlucci, D., 2005, "3-D Finite-element Gun Launch Simulation of a Surrogate Excalibur 155 mm Guided Artillery Projectile Modeling Capabilities and its Implications," In Proceedings of the 22nd International Symposium on Ballistics, pp. 259-267.
  2. Cordes, J. A., Vega, J., Carlucci, D., and Chaplin, R. C., 2005, Design Accelerations for the Army's Excalibur Projectile, No. ARAET-TR-05008, Picatinny, NJ: Armament Research, Development and Center.
  3. Vega, J. 2004, On Board Test Recorder(OBR) Test Date, NJ: Armament Research, Development and Center.
  4. Vega, J. 2006, Instrumented Ballistic Test Data - TM21, TM22, NJ: Armament Research, Development and Center.
  5. Davis, B. S., Hamilton, M. B. and Hepner, D. J., 2002, Shock Experiment Results of the Dfuze 8-channel Inertial Sensor Suite that Contains Commercial Magnetometers and Accelerometers, No. ARL-MR-532, Army Research Laboratory, Aberdeen Proving Ground, MD, U.S.A.
  6. Laughlin, K., 2008, Characterization of the Parameters That Affect Projectile Balloting Using Finite Element Analysis, Ph.D. Dissertation, University of Oklahoma, Oklahoma, USA.
  7. POONGSAN Defense R&D Institute, 2015, 2D Modeling of a 155 mm Projectile.
  8. Lee, G. H., 1999, Elastic-plastic Static and Dynamic Transient Analysis of Extended Range Projectile with Bomblets, Ph.D. Dissertation, Chungnam National University, Daejeon, Republic of Korea.
  9. High Speed Material Data Center, 2010, High Speed Material Properties of C1100, http://highspeed.kaist.edu (accessed August, 24, 2015).
  10. Hepner, D. J., Hollis, M. S., Muller, P. C., Harkins, T. E., Borgen, G., D'amico, W. P. and Burke, L. W., 2002, Aeroballistic Diagnostic System, U.S. Patent No. 6,349,652, Washington D.C., U.S.A.