• Title/Summary/Keyword: Gun-launched Projectile

Search Result 9, Processing Time 0.028 seconds

Numerical Simulation of a Gun-launched Projectile Considering Rifled-gun Tube (포신의 강선을 고려한 포 발사 해석)

  • Joo, Geunsu;Huh, Hoon;Jung, Yeong Hyuk;Kim, Ju Yeong;Seo, Songwon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.41 no.9
    • /
    • pp.877-885
    • /
    • 2017
  • This paper is concerned with numerical simulation of a gun-launched projectile considering a rifled gun-tube. Gun-launched conditions induce dynamic behaviors, such as high pressure and high speed rotation. A projectile and its internal electronic components may be damaged in such harsh environments. Hence, it is necessary to perform numerical simulation of a gun-launched projectile to predict its dynamic behaviors and stability. In this work, preceding research studies on gun-launched projectiles are investigated, and the simulation method is developed to rotate the projectile through between its rotating band and a rifled-gun tube. The proposed method is verified by comparison with experimental results, and the dynamic behaviors and stability of the projectile are evaluated under gun-launched conditions.

A Numerical Simulation of Projectile Aerodynamics Using a Ballistic Range (Ballistic Range를 이용한 Projectile 공기역학의 수치모사)

  • Jung S. J.;Rajesh G.;Kim H. D.;Lee J. M.
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • v.y2005m4
    • /
    • pp.386-393
    • /
    • 2005
  • The objective of the present study is to develop a new type of the Ballistic range, called 'two-stage light gas gun'. A computational work has been performed to investigate the aerodynamics of a projectile which is launched from the two-stage light gas gun. A moving coordinate method for a multi-domain technique is employed to simulate unsteady projectile flows with a moving boundary. The effect of a virtual mass is added to the axisymmetric unsteady Euler equation systems. The computed results reasonably capture the major flow characteristics which are generated in launching the projectile supersonically, such as the interaction between the shock wave and the blast wave, the interaction between the vortical flow and the barrel shock, and the steady under-expanded jet. The present computational results properly predict the velocity, acceleration, and drag histories of the projectile.

  • PDF

A Study on the Design and Performance Analysis of a Gun-Launched Projectile with Solid fuel Ramjet(SFRJ) (포 발사 고체연료 램제트 탄의 설계 및 성능해석에 관한 연구)

  • Lee, Sang-Kil;Kim, Chang-Kee;Lee, Sang-Seung
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.12 no.3
    • /
    • pp.49-59
    • /
    • 2008
  • In this study, the design method of a 155 mm Solid Fuel Ramjet projectile is proposed and a flight performance analysis program through mathematical modelling is developed. Through flight performance analysis, ramjet performance during flight, which is comprised of thrust, specific impulse, pressure recovery ratio, location of shock waves, and magnitude of drag, was predicted. The results show that compared to Rocket Assisted Projectile(RAP), the range was increased by 90 %. Furthermore, how variations in nozzle exit area ratio and the intake area cause variations in range was observed. This research on modeling and simulation methodology will provide useful data for future development of solid fuel ramjet projectiles.

Numerical Simulation of Aerodynamic Characteristics of a Supersonic Projectile (초음속 발사체의 공력 특성에 관한 수치해석)

  • Lim Chae-Min;Lee Jeong-Min;Kim Heuy-Dong
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.86-89
    • /
    • 2005
  • A computational work has been performed to investigate the aerodynamics of a projectile which is launched from the two-stage light gas gun. A moving coordinate method for a multi-domain technique is employed to simulate unsteady projectile flows with a moving boundary. The effect of a virtual mass is added to the axisymmetric unsteady Euler equation system. The computed results reasonably capture the major flow characteristics which we generated in launching the projectile supersonically, such as the interaction between the shock wave and the blast wave, the interaction between the vortical flow and the barrel shock, and the steady under-expanded jet. The present computational results properly predict the velocity, acceleration, and drag histories of the projectile.

  • PDF

An Experimental Method for Obtaining Aerodynamic Roll Damping Coefficients of Fin Stabilized Projectile from Telemetry Experiments (텔레메트리 시험을 이용한 날개안정형 발사체의 회전감쇠 공력계수 실험적 산출 방법)

  • Kim, Jinseok;Kim, Gyeonghun;Choi, Jaehyun
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.21 no.6
    • /
    • pp.784-789
    • /
    • 2018
  • Accurate aerodynamic characterization of projectile is crucial for successful development of munition. The aerodynamic characterization of fin stabilized projectile is more difficult than characterization of traditional symmetric ballistic projectile. Instrumented free flight experiments were conducted to quantify rolling behavior of fin stabilized projectile. The instrumented projectiles were launched from a rifled tube and the onboard sensor data were acquired through a telemetry transmitter. Roll rate was measured for fin stabilized projectile by means of an angular rate sensor. And, roll damping coefficients were estimated from onboard sensor data acquired during gun firing and trajectory analysis of mathematical model.

Optimal Guidance of Guided Projectile for Range Maximization with Boundary Condition on Fin Deployment Timing (조종날개 전개시점 경계조건을 포함한 지능화 탄약의 사거리 최대화 유도 기법)

  • Kim, Yongjae
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.68 no.1
    • /
    • pp.129-139
    • /
    • 2019
  • In order for a gun-launched guided projectile to glide to the maximum range, when to deploy the fin and start flight with guidance and control should be considered in range optimization process. This study suggests a solution to the optimal guidance problem for flight range maximization of the flight model of a guided projectile in vertical plane considering the aerodynamic properties. After converting the nonlinear Multi-Phase Optimal Control Problem to Two-Point Boundary Value Problem, the optimized guidance command and the best fin deployment timing are calculated by the proposed numerical method. The optimization results of the multiple flight rounds with various initial velocity and launch angle indicate that determining specific launch condition incorporated with the guidance scheme is of importance in terms of mechanical energy consumption.

A Study on perforation behavior of Aluminum 5052-H34 alloy by high velocity impact (고속충격에 의한 A1 5052-H34 합금의 관통거동에 관한 연구)

  • Sohn, Se-Won;Lee, Doo-Sung;Hong, Sung-Hee
    • Proceedings of the KSME Conference
    • /
    • 2001.11a
    • /
    • pp.174-179
    • /
    • 2001
  • In order to investigate the fracture behaviors(perforation modes) and resistance to perforation during ballistic impact of aluminum alloy plate, ballistic tests were conducted. Depth of penetration experiments with 5.56mm-diameter ball projectile launched into 25mm-thickness Al 5052-H34 targets were conducted. A powder gun launched the 3.55g projectiles at striking velocities between 0.6 and 1.0 km/s. radiography of the damaged targets showed different penetration modes as striking velocities increased. Resistance to perforation is determined by the protection ballistic limit($V_{50}$), a statistical velocity with 50% probability for complete perforation. Fracture behaviors and ballistic tolerance, described by perforation modes, are respectfully observed at and above ballistic limit velocities, as a result of $V_{50}$ test and Projectile Through Plates (PTP) test methods. PTP tests were conducted with $0^{\circ}$ obliquity at room temperature using 5.56mm ball projectile. $V_{50}$ tests with $0^{\circ}$ obliquity at room temperature were conducted with projectiles that were able to achieve near or complete perforation during PTP tests. The effect of various impact velocity are studied with depth of penetration.

  • PDF

Experimental and Numerical Studies on a Test Equipment for the Replication of Flight Motions of Spin-Stabilized Ammunition (회전안정탄약의 비행운동 모사장치에 대한 실험적·수치해석적 연구)

  • Lee, Youngki;Park, Sungtaek;Song, Yihwa;Choi, Minsu
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.18 no.6
    • /
    • pp.728-735
    • /
    • 2015
  • A gas gun system to replicate the flight motions of large caliber spin-stabilized ammunition has been investigated experimentally and numerically. The system is specially designed to study aerodynamic characteristics and dynamics of a flight body ejected from a cargo shell or a subsonic projectile itself at up to 2,000 rpm and 100 m/s. Raynolds-averaged Navier-Stokes equations with a overset mesh technique and 6-DOF dynamics were solved to decide the chamber pressure according to the muzzle velocity input by users. The predicted velocity values show less than 6 % of discrepancies compared to experimental data. The system has successfully been tested for the simulation of deployment of a parafoil for a 155 mm gun-launched projectile.

Development of the Connection Unit with a Gas Gun Installed in a Quadcopter-type Drone (쿼드콥터형 드론에 설치된 가스총 결합유닛의 개발)

  • Jeon, Junha;Kang, Ki-Jun;Kwon, Hyun-Jin;Chang, Se-Myong;Jeong, Jae-Bok;Baek, Jae-Gu
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.46 no.9
    • /
    • pp.774-781
    • /
    • 2018
  • In this investigation, a gas gun is proposed driven by carbon dioxide gas and installed on a quadcopter-type small unmanned drone for the purpose of cattle vaccination, and we developed a launcher and its connection unit. The system consists of a commercial drone, a gas gun, a solenoid valve, and the remote communication controller, etc. The velocity of launched projectile is measured, and the full system is finally validated through ground test and flight examination loaded for the real aircraft. The feasibility is checked if this technology is applicable to various disease abatement and hazard mitigation in the fields of agriculture and fire-fighting with the present research and development.