Browse > Article
http://dx.doi.org/10.1016/j.net.2016.09.002

Removal of Strontium Ions by Immobilized Saccharomyces Cerevisiae in Magnetic Chitosan Microspheres  

Yin, Yanan (Collaborative Innovation Center for Advanced Nuclear Energy Technology, Institute of Nuclear and New Energy Technology, Tsinghua University)
Wang, Jianlong (Collaborative Innovation Center for Advanced Nuclear Energy Technology, Institute of Nuclear and New Energy Technology, Tsinghua University)
Yang, Xiaoyong (Collaborative Innovation Center for Advanced Nuclear Energy Technology, Institute of Nuclear and New Energy Technology, Tsinghua University)
Li, Weihua (Collaborative Innovation Center for Advanced Nuclear Energy Technology, Institute of Nuclear and New Energy Technology, Tsinghua University)
Publication Information
Nuclear Engineering and Technology / v.49, no.1, 2017 , pp. 172-177 More about this Journal
Abstract
A novel biosorbent, immobilized Saccharomyces cerevisiae in magnetic chitosan microspheres was prepared, characterized, and used for the removal of $Sr^{2+}$ from aqueous solution. The structure and morphology of immobilized S. cerevisiae before and after $Sr^{2+}$adsorption were observed using scanning electron microscopy with energy dispersive X-ray spectroscopy. The experimental results showed that the Langmuir and Freundlich isotherm models could be used to describe the $Sr^{2+}$ adsorption onto immobilized S. cerevisiae microspheres. The maximal adsorption capacity ($q_m$) was calculated to be 81.96 mg/g by the Langmuir model. Immobilized S. cerevisiae was an effective adsorbent for the $Sr^{2+}$ removal from aqueous solution.
Keywords
Adsorption; Biosorbent; Immobilization; Magnetic Chitosan; Radioactive Waste; Saccharomyces Cerevisiae; Strontium;
Citations & Related Records
연도 인용수 순위
  • Reference
1 D. Yamaguchi, K. Furukawa, M. Takasuga, K. Watanabe, A magnetic carbon sorbent for radioactive material from the Fukushima nuclear accident, Scientif Rep. 4 (2014) 6053.
2 R. Yavari, D. Huang, A. Mostofizadeh, Sorption of strontium ions from aqueous solutions by oxidized multiwall carbon nanotubes, J. Radioanal. Nucl. Chem. 285 (2010) 703-710.   DOI
3 Y.J. Park, Y.C. Lee, W.S. Shin, S.J. Choi, Removal of cobalt, strontium and cesium from radioactive laundry wastewater by ammonium molybdophosphate- polyacrylonitrile (AMP-PAN), Chem. Eng. J. 162 (2010) 685-695.   DOI
4 Y.W. Chen, J.L. Wang, The characteristics and mechanism of Co(II) removal from aqueous solution by a novel xanthate-modified magnetic chitosan, Nucl. Eng. Des. 242 (2012) 452-457.   DOI
5 J.L. Wang, C. Chen, Chitosan-based biosorbents: modification and application for biosorption of heavy metals and radionuclides, Bioresourc. Technol. 160 (2014) 129-141.   DOI
6 M. Galamvos, J. Kufcakova, P. Rajec, Sorption of strontiumon Slovak bentonites, J. Radioanal. Nucl. Chem. 281 (2009) 347-357.   DOI
7 N.J. Coleman, D.S. Brassington, A. Raza, A.P. Mendham, Sorption of $Co^{2+}$ and $Sr^{2+}$ by waste-derived $11{\AA}$ tobermorite, Waste Mange. 26 (2006) 260-267.   DOI
8 S. Dimovic, I. Smiciklas, I. Plecas, D. Autonovic, Kinetic study of $Sr^{2+}$ sorption by bone char, Sep. Sci.Technol. 44 (2009) 645-667.   DOI
9 N.H.M. Kamel, Adsorption models of $^{137}Cs$ radionuclide and Sr(II) on some Egyptian soils, J. Environ. Radioact. 101 (2010) 297-303.   DOI
10 G.M. Gadd, Interactions of fungi with toxic metals, New Phytol. 124 (1993) 25-60.   DOI
11 J.L. Wang, C. Chen, Biosorption of heavy metals by Saccharomyces cerevisiae: a review, Biotechnol. Adv. 24 (2006) 427-451.   DOI
12 J.L. Wang, C. Chen, Biosorbents for heavy metals removal and their future, Biotechnol. Adv. 27 (2009) 195-226.   DOI
13 L.M. Zhou, J.P. Xu, X.Z. Liang, Z.R. Liu, Adsorption of platinum(IV) and palladium(II) from aqueous solution by magnetic cross-linking chitosan nanoparticles modified with ethylenediamine, J. Hazard. Mater. 182 (2010) 518-524.   DOI
14 Y.W. Chen, J.L. Wang, Preparation and characterization of magnetic chitosan nanoparticles and its application for Cu (II) removal, Chem. Eng. J. 168 (2010) 286-292.
15 Y.H. Zhu, J. Hu, J.L. Wang, Removal of $Co^{2+}$ from radioactive wastewater by polyvinyl alcohol (PVA)/chitosan magnetic composite, Prog. Nucl. Energ. 71 (2014) 172-178.   DOI
16 E. Repo, J.K. Warchol, T.A. Kurniawan, M.E.T. Silanpaa, Adsorption of Co(II) and Ni(II) by EDTA-and /or DTPA-modified chitosan: kinetic and equilibrium modeling, Chem. Eng. J. 161 (2010) 73-82.   DOI
17 Y.W. Chen, J.L. Wang, Removal of radionuclide $Sr^{2+}$ ions from aqueous solution using synthesized magnetic chitosan beads, Nucl. Eng. Des. 242 (2010) 445-451.
18 P.E. Podzus, M.E. Daraio, S.E. Jacobo, Chitosan magnetic microspheres for the technological applications: preparation and characterization, Physica. B. 404 (2009) 2710-2718.   DOI
19 J.L. Wang, Microbial Immobilization Techniques and Water Pollution Control, Science Press, Beijing, 2002.
20 C. Chen, J.L. Wang, Removal of $Pb^{2+}$, $Ag^+$, $Cs^+$, $Sr^{2+}$ from aqueous solution by brewery's waste biomass, J. Hazard. Mater. 151 (2008) 65-70.   DOI
21 A. Naeem, J.R. Woertz, J.B. Fein, Experimental measurement of proton, Cd, Pb, Sr, and Zn adsorption onto the fungal species Saccharomyces cerevisiae, Environ. Sci. Technol. 40 (2006) 5724-5729.   DOI
22 Q.Q. Peng, Y.G. Liu, G.M. Zeng, W.H. Xu, C.P. Yang, J.J. Zhang, Biosorption of copper(II) by immobilizing Saccharomyces cerevisiae on the surface of chitosan-coated magnetic nanoparticles from aqueous solution, J. Hazard. Mater. 177 (2010) 676-682.   DOI
23 J.B. Fein, A.M. Martin, P.G. Wightman, Metal adsorption onto bacterial surfaces: development of a predictive approach, Geochim. Cosmochim Acta. 65 (2001) 4267-4273.   DOI
24 J.B. Fein, C.J. Daughney, N. Yee, T.A. Davis, A chemical equilibrium model for metal adsorption onto bacterial surfaces, Geochim, Cosmochim Acta. 61 (1997) 3319-3328.   DOI
25 D.M. Borrok, J.B. Fein, The impact of ionic strength on the adsorption of protons, Pb, Cd, and Sr onto the surfaces of Gram negative bacteria: testing non-electro static, diffuse, and triple-layer models, J. Colloid Interface Sci. 286 (2005) 110-126.   DOI
26 J.L. Wang, Biosorption of copper(II) by chemically modified biomass of Saccharomyces cerevisiae, Process Biochem. 37 (2002) 847-850.   DOI
27 V.D. Maria, S.D. Ecaterina, Evaluation of $Cu^{2+}$, $Co^{2+}$ and $Ni^{2+}$ ions removal from aqueous solution using a novel chitosan/clinoptilolite composite: kinetics and isotherms, Chem. Eng. J. 160 (2010) 157-163.   DOI
28 J.M. Smith, Chemical Engineering Kinetics, third ed., McGraw-Hill, Singapore, 1981.
29 G.N. Kousalya, M.R. Gandhi, N. Viswanathan, V. Meenakshi, Preparation and metal uptake studies of modified forms of chitin, Int. J. Biol. Macromol. 47 (2010) 583-589.   DOI
30 B. Ma, S. Oh, W.S. Shin, S.J. Choi, Removal of $Co^{2+}$, $Sr^{2+}$ and $Cs^+$ from aqueous solution by phosphate-modified montmorillonite (PMM), Desalination 276 (2011) 336-346.   DOI
31 W. Guan, J.M. Pan, H.X. Ou, X. Wang, X.H. Zou, W. Hu, C.X. Li, X.Y. Wu, Removal of strontium(II) ions by potassium tetratitanate whisker and sodium trititanate whisker from aqueous solution: Equilibrium, kinetics and thermodynamics, Chem. Eng. J. 167 (2011) 215-222.   DOI