Removal of Strontium Ions by Immobilized Saccharomyces Cerevisiae in Magnetic Chitosan Microspheres |
Yin, Yanan
(Collaborative Innovation Center for Advanced Nuclear Energy Technology, Institute of Nuclear and New Energy Technology, Tsinghua University)
Wang, Jianlong (Collaborative Innovation Center for Advanced Nuclear Energy Technology, Institute of Nuclear and New Energy Technology, Tsinghua University) Yang, Xiaoyong (Collaborative Innovation Center for Advanced Nuclear Energy Technology, Institute of Nuclear and New Energy Technology, Tsinghua University) Li, Weihua (Collaborative Innovation Center for Advanced Nuclear Energy Technology, Institute of Nuclear and New Energy Technology, Tsinghua University) |
1 | D. Yamaguchi, K. Furukawa, M. Takasuga, K. Watanabe, A magnetic carbon sorbent for radioactive material from the Fukushima nuclear accident, Scientif Rep. 4 (2014) 6053. |
2 | R. Yavari, D. Huang, A. Mostofizadeh, Sorption of strontium ions from aqueous solutions by oxidized multiwall carbon nanotubes, J. Radioanal. Nucl. Chem. 285 (2010) 703-710. DOI |
3 | Y.J. Park, Y.C. Lee, W.S. Shin, S.J. Choi, Removal of cobalt, strontium and cesium from radioactive laundry wastewater by ammonium molybdophosphate- polyacrylonitrile (AMP-PAN), Chem. Eng. J. 162 (2010) 685-695. DOI |
4 | Y.W. Chen, J.L. Wang, The characteristics and mechanism of Co(II) removal from aqueous solution by a novel xanthate-modified magnetic chitosan, Nucl. Eng. Des. 242 (2012) 452-457. DOI |
5 | J.L. Wang, C. Chen, Chitosan-based biosorbents: modification and application for biosorption of heavy metals and radionuclides, Bioresourc. Technol. 160 (2014) 129-141. DOI |
6 | M. Galamvos, J. Kufcakova, P. Rajec, Sorption of strontiumon Slovak bentonites, J. Radioanal. Nucl. Chem. 281 (2009) 347-357. DOI |
7 | N.J. Coleman, D.S. Brassington, A. Raza, A.P. Mendham, Sorption of and by waste-derived tobermorite, Waste Mange. 26 (2006) 260-267. DOI |
8 | S. Dimovic, I. Smiciklas, I. Plecas, D. Autonovic, Kinetic study of sorption by bone char, Sep. Sci.Technol. 44 (2009) 645-667. DOI |
9 | N.H.M. Kamel, Adsorption models of radionuclide and Sr(II) on some Egyptian soils, J. Environ. Radioact. 101 (2010) 297-303. DOI |
10 | G.M. Gadd, Interactions of fungi with toxic metals, New Phytol. 124 (1993) 25-60. DOI |
11 | J.L. Wang, C. Chen, Biosorption of heavy metals by Saccharomyces cerevisiae: a review, Biotechnol. Adv. 24 (2006) 427-451. DOI |
12 | J.L. Wang, C. Chen, Biosorbents for heavy metals removal and their future, Biotechnol. Adv. 27 (2009) 195-226. DOI |
13 | L.M. Zhou, J.P. Xu, X.Z. Liang, Z.R. Liu, Adsorption of platinum(IV) and palladium(II) from aqueous solution by magnetic cross-linking chitosan nanoparticles modified with ethylenediamine, J. Hazard. Mater. 182 (2010) 518-524. DOI |
14 | Y.W. Chen, J.L. Wang, Preparation and characterization of magnetic chitosan nanoparticles and its application for Cu (II) removal, Chem. Eng. J. 168 (2010) 286-292. |
15 | Y.H. Zhu, J. Hu, J.L. Wang, Removal of from radioactive wastewater by polyvinyl alcohol (PVA)/chitosan magnetic composite, Prog. Nucl. Energ. 71 (2014) 172-178. DOI |
16 | E. Repo, J.K. Warchol, T.A. Kurniawan, M.E.T. Silanpaa, Adsorption of Co(II) and Ni(II) by EDTA-and /or DTPA-modified chitosan: kinetic and equilibrium modeling, Chem. Eng. J. 161 (2010) 73-82. DOI |
17 | Y.W. Chen, J.L. Wang, Removal of radionuclide ions from aqueous solution using synthesized magnetic chitosan beads, Nucl. Eng. Des. 242 (2010) 445-451. |
18 | P.E. Podzus, M.E. Daraio, S.E. Jacobo, Chitosan magnetic microspheres for the technological applications: preparation and characterization, Physica. B. 404 (2009) 2710-2718. DOI |
19 | J.L. Wang, Microbial Immobilization Techniques and Water Pollution Control, Science Press, Beijing, 2002. |
20 | C. Chen, J.L. Wang, Removal of , , , from aqueous solution by brewery's waste biomass, J. Hazard. Mater. 151 (2008) 65-70. DOI |
21 | A. Naeem, J.R. Woertz, J.B. Fein, Experimental measurement of proton, Cd, Pb, Sr, and Zn adsorption onto the fungal species Saccharomyces cerevisiae, Environ. Sci. Technol. 40 (2006) 5724-5729. DOI |
22 | Q.Q. Peng, Y.G. Liu, G.M. Zeng, W.H. Xu, C.P. Yang, J.J. Zhang, Biosorption of copper(II) by immobilizing Saccharomyces cerevisiae on the surface of chitosan-coated magnetic nanoparticles from aqueous solution, J. Hazard. Mater. 177 (2010) 676-682. DOI |
23 | J.B. Fein, A.M. Martin, P.G. Wightman, Metal adsorption onto bacterial surfaces: development of a predictive approach, Geochim. Cosmochim Acta. 65 (2001) 4267-4273. DOI |
24 | J.B. Fein, C.J. Daughney, N. Yee, T.A. Davis, A chemical equilibrium model for metal adsorption onto bacterial surfaces, Geochim, Cosmochim Acta. 61 (1997) 3319-3328. DOI |
25 | D.M. Borrok, J.B. Fein, The impact of ionic strength on the adsorption of protons, Pb, Cd, and Sr onto the surfaces of Gram negative bacteria: testing non-electro static, diffuse, and triple-layer models, J. Colloid Interface Sci. 286 (2005) 110-126. DOI |
26 | J.L. Wang, Biosorption of copper(II) by chemically modified biomass of Saccharomyces cerevisiae, Process Biochem. 37 (2002) 847-850. DOI |
27 | V.D. Maria, S.D. Ecaterina, Evaluation of , and ions removal from aqueous solution using a novel chitosan/clinoptilolite composite: kinetics and isotherms, Chem. Eng. J. 160 (2010) 157-163. DOI |
28 | J.M. Smith, Chemical Engineering Kinetics, third ed., McGraw-Hill, Singapore, 1981. |
29 | G.N. Kousalya, M.R. Gandhi, N. Viswanathan, V. Meenakshi, Preparation and metal uptake studies of modified forms of chitin, Int. J. Biol. Macromol. 47 (2010) 583-589. DOI |
30 | B. Ma, S. Oh, W.S. Shin, S.J. Choi, Removal of , and from aqueous solution by phosphate-modified montmorillonite (PMM), Desalination 276 (2011) 336-346. DOI |
31 | W. Guan, J.M. Pan, H.X. Ou, X. Wang, X.H. Zou, W. Hu, C.X. Li, X.Y. Wu, Removal of strontium(II) ions by potassium tetratitanate whisker and sodium trititanate whisker from aqueous solution: Equilibrium, kinetics and thermodynamics, Chem. Eng. J. 167 (2011) 215-222. DOI |