DOI QR코드

DOI QR Code

Almost Ricci Soliton and Gradient Almost Ricci Soliton on 3-dimensional f-Kenmotsu Manifolds

  • Majhi, Pradip (Department of Mathematics, University of North Bengal)
  • Received : 2016.05.08
  • Accepted : 2016.12.29
  • Published : 2017.06.23

Abstract

The object of the present paper is to study almost Ricci solitons and gradient almost Ricci solitons in 3-dimensional f-Kenmotsu manifolds.

Keywords

References

  1. C. Aquino, A. Barros and E. Jr. Rebeiro, Some applications of the Hodge-de Rahm decomposition to Ricci solitons, Results Math. 60(2011), 245-254. https://doi.org/10.1007/s00025-011-0166-1
  2. A. Barros and E. Jr. Rebeiro, Some characterizations for compact almost Ricci solitons, Proc. Amer. Math. Soc., 140(2012), 1033-1040. https://doi.org/10.1090/S0002-9939-2011-11029-3
  3. A. Barros, R. Batista and E. Jr. Rebeiro, Compact almost Ricci solitons with constant scalar curvature are gradient, Monatsh. Math. 174(2014), 29-39. https://doi.org/10.1007/s00605-013-0581-3
  4. D. E. Blair, Contact manifolds in Riemannian geometry, Lecture Notes in Mathematics Vol. 509, Springer-Verlag, Berlin-New York, (1976).
  5. C. S. Bagewadi and G. Ingalahalli, Ricci Solitons in Lorentzian $\alpha$-Sasakian Manifolds, Acta Math. Acad. Paedagog. Nyhazi., 28(1)(2012), 59-68.
  6. U. C. De, M. Turan, A. Yildiz and A. De, Ricci solitons and gradient Ricci solitons on 3-dimensional normal almost contact metric manifolds, Publ. Math. Debrecen, 80(2012), 127-142.
  7. U. C. De and A. K. Mondal, Three dimensional Quasi-Sasakian manifolds and Ricci solitons, SUT J. Math. 48(1)(2012), 71-81.
  8. U. C. De, A. Yildiz and M. Turan, On 3-dimensional f-Kenmotsu manifolds and Ricci solitons, Ukrainian Math. J., 65(2013), 684-693. https://doi.org/10.1007/s11253-013-0806-6
  9. U. C. De and Y. Matsuyama, Ricci solitons and gradient Ricci solitons in a Kenmotsu manifold, Southeast Asian Bull. Math. 37(2013), 691-697.
  10. M. Fernandez-Lopez and E. Garcia-Rio, A remark on compact Ricci soliton, Math. Ann., 340(2008), 893-896. https://doi.org/10.1007/s00208-007-0173-4
  11. S. I. Goldberg and K. Yano, Integrability of almost cosymplectic structures, Pacific J. Math., 31(1969), 373-382. https://doi.org/10.2140/pjm.1969.31.373
  12. A. Ghosh, Certain contact metrics as Ricci almost solitons, Results Math., 65(2014), 81-94. https://doi.org/10.1007/s00025-013-0331-9
  13. D. Janssens and L. Vanhecke, Almost contact structures and curvature tensors, Kodai Math. J., 4(1981), 1-27. https://doi.org/10.2996/kmj/1138036310
  14. K. Kenmotsu, A class of almost contact Riemannian manifolds, Tohoku Math. J., 24(1972), 93-103. https://doi.org/10.2748/tmj/1178241594
  15. Z. Olszak, Locally conformal almost cosymplectic manifolds, Colloq. Math., 57(1989), 73-87. https://doi.org/10.4064/cm-57-1-73-87
  16. Z. Olszak and R. Rosca, Normal locally conformal almost cosymplectic manifolds, Publ. Math. Debrecen, 39(1991), 315-323.
  17. G. Pitis, A remark on Kenmotsu manifolds, Bul. Univ. Brasov Ser. C, 30(1988), 31-32.
  18. S. Pigola, M. Rigoli, M. Rimoldi and A. Setti, Ricci almost solitons, Ann. Sc. Norm. Super. Pisa Cl. Sci. 5(10)(2011), 757-799.
  19. S. Sasaki and Y. Hatakeyama, On differentiable manifolds with certain structures which are closely related to almost contact structures II, Tohoku Math. J., 13(1961), 281-294. https://doi.org/10.2748/tmj/1178244304