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Abstract. The object of the present paper is to study almost Ricci solitons and gradient

almost Ricci solitons in 3-dimensional f -Kenmotsu manifolds.

1. Introduction

The study of almost Ricci soliton was introduced by Pigola et. al. [18], where
essentially they modified the definition of Ricci soliton by adding the condition on
the parameter λ to be a variable function, more precisely, we say that a Riemannian
manifold (Mn, g) admits an almost Ricci soliton, if there exists a complete vector
field V , called potential vector field and a smooth soliton function λ : Mn −→ R
satisfying

(1.1) Ric+
1

2
£V g = λg,

where Ric and £ stand, respectively, for the Ricci tensor and Lie derivative. We
shall refer to this equation as the fundamental equation of an almost Ricci soliton
(Mn, g, V, λ). It will be called expanding, steady or shrinking, respectively, if λ < 0,
λ = 0 or λ > 0. Otherwise it will be called indefinite. When the vector field V
is gradient of a smooth function f : Mn −→ R the metric will be called gradient
almost Ricci soliton. In this case the preceding equation becomes

(1.2) Ric+∇2f = λg,
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where∇2f stands for the Hessian of f . Sometimes classical theory of tensorial calcu-
lus is more convenient to make computations. Then, we can write the fundamental
equation in this language as follows:

(1.3) Rij +∇i∇jf = λgij .

Moreover, if the vector field X is trivial, or the potential f is constant, the
almost Ricci soliton will be called trivial, otherwise it will be a non-trivial almost
Ricci soliton. We notice that when n ≥ 3 and Xis a Killing vector field an almost
Ricci soliton will be a Ricci soliton, since in this case we have an Einstein manifold,
from which we can apply Schur’s lemma to deduce that λ is constant. Taking into
account that the soliton function λ is not necessarily constant, certainly comparison
with soliton theory will be modified. In particular the rigidity result contained in
Theorem 1.3 of [18] indicates that almost Ricci solitons should reveal a reasonably
broad generalization of the fruitful concept of classical soliton. In fact, we refer the
reader to [18] to see some of this changes.

In the direction to understand the geometry of almost Ricci soliton, Barros and
Ribeiro Jr. proved in [2] that a compact gradient almost Ricci soliton with non-
trivial conformal vector field is isometric to a Euclidean sphere. In the same paper
they proved an integral formula for compact case, which was used to prove several
rigidity results, for more details see [2].

The existence of Ricci almost soliton has been confirmed by Pigola et. al. [18]
on some certain class of warped product manifolds. Some characterization of Ricci
almost soliton on a compact Riemannian manifold can be found in ([1], [2], [3]). It
is interesting to note that if the potential vector field V of the Ricci almost soliton
(M, g, V, λ) is Killing then the soliton becomes trivial, provided the dimension of
M > 2. Moreover, if V is conformal then Mn is isometric to Euclidean sphere
Sn. Thus the Ricci almost soliton can be considered as a generalization of Einstein
metric as well as Ricci soliton.
In [6], authors studied Ricci solitons and gradient Ricci solitons on 3-dimensional
normal almost contact metric manifolds. In [10] authors studied compact Ricci soli-
ton. Beside these, A. Ghosh [12] studied K-contact and Sasakian manifolds whose
metric is gradient almost Ricci solitons. Conditions of K-contact and Sasakian
manifolds are more stronger than normal almost contact metric manifolds in the
sense that the 1-form η of normal almost contact metric manifolds are not contact
form. The Ricci soliton and gradient Ricci soliton have been studied by several
authors such as ([5], [7], [9]) and many others.

The present paper is organized as follows:
After preliminaries, in section 3 we study almost Ricci soliton in 3-dimensional
f -Kenmotsu manifolds. Finally, we consider gradient almost Ricci solitons in 3-
dimensional f -Kenmotsu manifolds.

2. Preliminaries

LetM be an almost contact manifold, i.e., M is a connected (2n+1)-dimensional
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differentiable manifold endowed with an almost contact metric structure (φ, ξ, η, g)
[4]. As usually, denote by Φ the fundamental 2-form of M, Φ(X,Y ) = g(X,φY ),
X, Y ∈ χ(M), χ(M) being the Lie algebra of differentiable vector fields on M.

For further use, we recall the following definitions ([4], [11], [19]). The manifold
M and its structure (φ, ξ, η, g) is said to be:

(i) normal if the almost complex structure defined on the product manifoldM×R
is integrable (equivalently [φ, φ] + 2dη ⊗ ξ = 0),

(ii) almost cosymplectic if dη = 0 and dΦ = 0,

(iii) cosymplectic if it is normal and almost cosymplectic (equivalently, ∇φ = 0,
∇ being covariant differentiation with respect to the Levi-Civita connection).

The manifold M is called locally conformal cosymplectic (respectively, almost
cosymplectic) if M has an open covering {Ut} endowed with differentiable func-
tions σt : Ut → R such that over each Ut the almost contact metric structure
(φt, ξt, ηt, gt) defined by

φt = φ, ξt = eσtξ, ηt = e−σtη, gt = e−2σtg

is cosymplectic (respectively, almost cosymplectic).
Olszak and Rosca [16] studied normal locally conformal almost cosymplectic

manifold. They gave a geometric interpretation of f -Kenmotsu manifolds and stud-
ied some curvature properties. Among others they proved that a Ricci symmetric
f -Kenmotsu manifold is an Einstein manifold.

By an f -Kenmotsu manifold we mean an almost contact metric manifold which
is normal and locally conformal almost cosymplectic.

Let M be a real (2n+ 1)-dimensional differentiable manifold endowed with an
almost contact structure (φ, ξ, η, g) satisfying

φ2 = −I + η ⊗ ξ, η(ξ) = 1,

φξ = 0, η ◦ φ = 0, η(X) = g(X, ξ),(2.1)

g(φX, φY ) = g(X,Y )− η(X)η(Y ),

for any vector fields X,Y ∈ χ(M), where I is the identity of the tangent bundle
TM , φ is a tensor field of (1, 1)-type, η is a 1-form, ξ is a vector field and g is a
metric tensor field. We say that (M,φ, ξ, η, g) is an f -Kenmotsu manifold if the
covariant differentiation of φ satisfies [15]:

(2.2) (∇Xφ)(Y ) = f(g(φX, Y )ξ − η(Y )φX),

where f ∈ C∞(M) such that df ∧η = 0. If f = α = constant 6= 0, then the manifold
is a α-Kenmotsu manifold [13]. 1-Kenmotsu manifold is a Kenmotsu manifold ([14],
[17]). If f = 0, then the manifold is cosymplectic [13]. An f -Kenmotsu manifold is
said to be regular if f2 + f ′ 6= 0, where f ′ = ξf.
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For an f -Kenmotsu manifold from (2.2) it follows that

(2.3) ∇Xξ = f{X − η(X)ξ}.

The condition df ∧ η = 0 holds if dimM ≥ 5. In general this does not hold if
dimM = 3 [16].

In a 3-dimensional Riemannian manifold, we always have

R(X,Y )Z = g(Y,Z)QX − g(X,Z)QY + S(Y, Z)X − S(X,Z)Y

−r
2
{g(Y, Z)X − g(X,Z)Y }.(2.4)

In a 3-dimensional f -Kenmotsu manifold we have [16]

R(X,Y )Z = (
r

2
+ 2f2 + 2f ′)(X ∧ Y )Z(2.5)

−(
r

2
+ 3f2 + 3f ′){η(X)(ξ ∧ Y )Z + η(Y )(X ∧ ξ)Z},

(2.6) S(X,Y ) = (
r

2
+ f2 + f

′
)g(X,Y )− (

r

2
+ 3f2 + 3f ′)η(X)η(Y ),

where r is the scalar curvature of M and f ′ = ξ(f).
From (2.5), we obtain

(2.7) R(X,Y )ξ = −(f2 + f
′
)[η(Y )X − η(X)Y ],

and (2.6) yields

(2.8) S(X, ξ) = −2(f2 + f
′
)η(X).

Example.([8]) We consider the three-dimensional manifold M = {(x, y, z) ∈
R3, z 6= 0}, where (x, y, z) are the standard coordinates in R3. The vector fields

e1 = z2
∂

∂x
, e2 = z2

∂

∂y
, e3 =

∂

∂z

are linearly independent at each point of M . Let g be the Riemannian metric
defined by

g(e1, e3) = g(e2, e3) = g(e1, e2) = 0,

g(e1, e1) = g(e2, e2) = g(e3, e3) = 1.

Let η be the 1-form defined by η(Z) = g(Z, e3) for any Z ∈ χ(M). Let φ be the
(1, 1) tensor field defined by φ(e1) = −e2, φ(e2) = e1, φ(e3) = 0.
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Then using linearity of φ and g we have

η(e3) = 1, φ2Z = −Z + η(Z)e3,

g(φZ, φW ) = g(Z,W )− η(Z)η(W ),

for any Z,W ∈ χ(M). Now, by direct computations we obtain

[e1, e2] = 0, [e2, e3] = −2

z
e2, [e1, e3] = −2

z
e1.

The Riemannian connection∇ of the metric tensor g is given by the Koszul’s formula
which is

2g(∇XY, Z) = Xg(Y, Z) + Y g(Z,X)− Zg(X,Y )(2.9)

−g(X, [Y,Z])− g(Y, [X,Z]) + g(Z, [X,Y ]).

Using (2.9) we have

2g(∇e1e3, e1) = 2g(−2

z
e1, e1),

2g(∇e1e3, e2) = 0 and 2g(∇e1e3, e3) = 0.

Hence ∇e1e3 = − 2
z e1. Similarly, ∇e2e3 = − 2

z e2 and ∇e3e3 = 0. (2.9) further yields

∇e1e2 = 0, ∇e1e1 =
2

z
e3,

∇e2e2 =
2

z
e3, ∇e2e1 = 0,

∇e3e2 = 0, ∇e3e1 = 0.

From the above it follows that the manifold satisfies ∇Xξ = f{X − η(X)ξ} for
ξ = e3, where f = − 2

z . Hence we conclude that M is an f -Kenmotsu manifold.
Also f2 + f ′ 6= 0. Hence M is a regular f -Kenmotsu manifold.

3. Almost Ricci Soliton

In this section we consider almost Ricci solitons on 3-dimensional f -Kenmotsu
manifolds. In particular, let the potential vector field V be pointwise collinear with
ξ i.e., V = bξ, where b is a function on M . Then from (1.1) we have

g(∇Xbξ, Y ) + g(∇Y bξ,X) + 2S(X,Y ) = 2λg(X,Y ).(3.1)

Using (2.3) in (3.1), we get

2fb[g(X,Y )− η(X)η(Y )] + (Xb)η(Y ) + (Y b)η(X) + 2S(X,Y ) = 2λg(X,Y ).(3.2)

Putting Y = ξ in (3.2) and using (2.8) yields

(Xb) + (ξb)η(X)− 4(f2 + f ′)η(X) = 2λη(X).(3.3)
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Putting X = ξ in (3.3) we obtain

ξb = 2(f2 + f ′) + λ.(3.4)

Putting the value of ξb in (3.3) yields

db = [λ+ 2(f2 + f ′)]η.(3.5)

Applying d on (3.5) and using d2 = 0, we get

0 = d2b = [λ+ 2(f2 + f ′)]dη.(3.6)

Taking wedge product of (3.6) with η, we have

[λ+ 2(f2 + f ′)]η ∧ dη = 0.(3.7)

Since η ∧ dη 6= 0 in a 3-dimensional f -Kenmotsu manifold, therefore

λ+ 2(f2 + f ′) = 0⇒ λ = −2(f2 + f ′).(3.8)

Using (3.8) in (3.5) gives db = 0 i.e., b =constant. Therefore from (3.2) we have

S(X,Y ) = (λ− fb)g(X,Y ) + fbη(X)η(Y ).(3.9)

In view of (3.9) we can state the following:

Theorem 3.1. If in a 3-dimensional f -Kenmotsu manifold the metric g admits
almost Ricci soliton and V is pointwise collinear with ξ, then V is constant multiple
of ξ and the manifold is η-Einstein of the form (3.9).

The converse of the above theorem is not true, in general. However if we take
f = constant, i.e., if we consider a 3-dimensional η-Einstein f -Kenmotsu manifold,
then it admits a Ricci soliton. This can be proved as follows:

Let M be a 3-dimensional η-Einstein f -Kenmotsu manifold and V = ξ. Then

(3.10) S(X,Y ) = γg(X,Y ) + δη(X)η(Y ),

where γ and δ are certain scalars.
Now using (2.3)

(£ξg)(X,Y ) = g(∇Xξ, Y ) + g(∇Y ξ,X)

= 2f{g(X,Y )− η(X)η(Y )}.

Therefore

(£ξg)(X,Y ) + 2S(X,Y )− 2λg(X,Y ) = 2(f + γ − λ)g(X,Y )

−2(f − δ)η(X)η(Y ).(3.11)
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From equation (3.11) it follows that M admits a Ricci soliton (g, ξ, λ) if f+γ−λ = 0
and δ = f = constant. From (3.10) we have using (2.8), −2f2 = γ + δ. Hence
γ = −2f2 − f = constant. Therefore λ = (γ + δ) = constant. So we have the
following:

Theorem 3.2. If a 3-dimensional f -Kenmotsu manifold is η-Einstein of the form
S = γg + δη ⊗ η, then a Ricci almost soliton (M, g, ξ, λ) reduces to a Ricci soliton
(g, ξ, (γ + δ)).

Now let V = ξ. Then (3.1) reduces to

(£ξg)(X,Y ) + 2S(X,Y ) = 2λg(X,Y ).(3.12)

Now, in view of (2.6) we have

(£ξg)(X,Y ) = −2
[(r

2
+ f2 + f ′

)
g(X,Y )(3.13)

−
(r

2
+ 3f2 + 3f ′

)
η(X)η(Y )

]
+ 2λg(X,Y ).

2f{g(X,Y )− η(X)η(Y )} = 2λg(X,Y )− 2
[(r

2
+ f2 + f ′

)
g(X,Y )(3.14)

−
(r

2
+ 3f2 + 3f ′

)
η(X)η(Y )

]
.

Putting X = Y = ξ in (3.14) yields

λ = 4(f2 + f ′).(3.15)

Assuming that f = constant, we get f ′ = ξf = 0. This implies λ = 4f2 = constant.
Thus we can state the following:

Theorem 3.3. If a 3-dimensional f -Kenmotsu manifold with f =constant admits
almost Ricci soliton then it reduces to a Ricci soliton.

4. Gradient Almost Ricci Soliton

This section is devoted to study 3-dimensional f -Kenmotsu manifolds admitting
gradient almost Ricci soliton. For a gradient almost Ricci soliton, we have

∇YDf = λY −QY,(4.1)

where D denotes the gradient operator of g.
Differentiating (4.1) covariantly in the direction of X yields

∇X∇YDf = dλ(X)Y + λ∇XY − (∇XQ)Y.(4.2)



316 Pradip Majhi

Similarly, we get

∇Y∇XDf = dλ(Y )X + λ∇YX − (∇YQ)X.(4.3)

and

∇[X,Y ]Df = λ[X,Y ]−Q[X,Y ].(4.4)

In view of (4.2),(4.3) and (4.4), we have

R(X,Y )Df = ∇X∇YDf −∇Y∇XDf −∇[X,Y ]Df(4.5)

= (∇YQ)X − (∇XQ)Y − (Y λ)X + (Xλ)Y.

We get from (2.6)

QY =
(r

2
+ f2 + f

′
)
Y −

(r
2

+ 3f2 + 3f ′
)
η(Y )ξ,(4.6)

Differentiating (4.6) covariantly in the direction of X and using (2.3), we get

(∇XQ)Y =

{
(Xr)

2
+ 2f(Xf) + (Xf ′)

}
Y

−
{

(Xr)

2
+ 6f(Xf) + 3(Xf ′)

}
{fg(X,Y )ξ + fη(Y )X − 2fη(X)η(Y )ξ}.(4.7)

In view of (4.7), we get from (4.5)

R(X,Y )Df =

{
(Y r)

2
+ 2f(Y f) + (Y f ′)

}
X −

{
(Xr)

2
+ 2f(Xf) + (Xf ′)

}
Y

−
{

(Y r)

2
+ 6f(Y f) + 3(Y f ′)

}
{fg(X,Y )ξ + fη(X)Y − 2fη(X)η(Y )ξ}

+

{
(Xr)

2
+ 6f(Xf) + 3(Xf ′)

}
{fg(X,Y )ξ + fη(Y )X − 2fη(X)η(Y )ξ}

− (Y λ)X + (Xλ)Y.(4.8)

This implies

g(R(X, ξ)Df, ξ) =

{
(ξr)

2
+ 2f(ξf) + (ξf ′)

}
η(X)

−
{

(Xr)

2
+ 2f(Xf) + (Xf ′)

}
− (ξλ)η(X) + (Xλ).(4.9)

Also, we have from (2.5)

g(R(X, ξ)Df, ξ) = (f2 + f ′){(Xf)− (ξf)η(X)}.(4.10)
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In view of (4.9) and (4.10) we obtain

(f2 + f ′){(Xf)− (ξf)η(X)} =

{
(ξr)

2
+ 2f(ξf) + (ξf ′)

}
η(X)

−
{

(Xr)

2
+ 2f(Xf) + (Xf ′)

}
− (ξλ)η(X) + (Xλ).(4.11)

Assuming that the scalar curvature r and f are constants. Then it follows from
(4.11) that

dλ− (ξλ)η = 0.(12)

Applying d both sides of (12), we get

ξλ = 0.(13)

Using (13) in (12), we have

dλ = 0.(14)

This implies λ = constant. Thus we can state the following:

Theorem 4.1. If a 3-dimensional f -Kenmotsu manifold admits gradient almost
Ricci soliton then it reduces to a Ricci soliton provided the scalar curvature r and
f are constants.
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