DOI QR코드

DOI QR Code

Chemical Speciation of Heavy Metals in Soils of Jeju Island, Korea

제주도 토양 중 중금속의 화학적 형태

  • Hyun, Sung-Su (Research Institute of Health & Environment, Jeju Special Self-Governing Province) ;
  • Kim, Se-Ra (Research Institute of Health & Environment, Jeju Special Self-Governing Province) ;
  • Lee, Min-Gyu (Department of Chemical Engineering, Pukyong National University) ;
  • Kam, Sang-Kyu (Department of Environmental Engineering, Jeju National University)
  • 현성수 (제주특별자치도 보건환경연구원) ;
  • 김세라 (제주특별자치도 보건환경연구원) ;
  • 이민규 (부경대학교 화학공학과) ;
  • 감상규 (제주대학교 환경공학과)
  • Received : 2017.06.13
  • Accepted : 2017.07.13
  • Published : 2017.07.31

Abstract

For 26 soil series distributed more than 1% among 63 soil series in Jeju Island, natural uncultivated soil samples were collected. For these soils, the chemical speciation of eight heavy metals (Cd, Cr, Cu, Mn, Ni, Pb, V, and Zn) was examined. Further, the Plant Bioavailability (PB) and Mobility Factor (MF) of these heavy metals were evaluated using Tessier's 5-step sequential extraction method (exchangeable, carbonate, reducible (bound to Fe/Mn oxides), oxidizable (bound to organic matter), and residual fraction). The main form present was residual fraction for Cd and Zn; residual and oxidizable fractions for Cr, Cu, Ni, and Pb; reducible fraction for Mn; and carbonate fraction for V. The average plant availability and average mobility factor were found to be V (57.37%) > Zn (12.49%) > Cd (11.76%) > Cu (11.19%) > Pb (9.37%) > Cr (9.09%) > Mn (3.13%) > Ni (2.63%), and Mn (61.04%) > V (59.94%) > Zn (31.54%) > Cd (17.65%) > Cr (15.66%) > Ni (13.89%) > Pb (13.80%) > Cu (13.53%), respectively.

Keywords

References

  1. Alloway, B. J., 1990, Heavy metals in soils, Blackie and Son, Glasgow.
  2. Alloway, B. J., 1995, The origin of heavy metals in soils, in: Alloway, B. J. (ed.), Heavy Metals in Soils, Blackie Academic and Professional, London, UK, 38-57.
  3. Alloway, B. J., Thornton, I., Smart, G. A., Sherlock, J. C., Quinn, M. J., 1988, Metal availability, special issue (the Shipham report): An Investigation into cadmium contamination and its implications for human health, Sci. Total Environ., 75, 41-69. https://doi.org/10.1016/0048-9697(88)90159-3
  4. Bulent, T., 2016, Heavy metal mobility and bioavailability on soil pollution and environmental risks in greenhouse areas, Int. J. Adv. Agric. Environ. Eng., 3, 208-213.
  5. Burt, R., Wilson, M. A., Mays, M. D., Lee, C. W., 2003, Major and trace elements of selected pedons in the USA, J. Environ. Qual., 32, 2109-2121. https://doi.org/10.2134/jeq2003.2109
  6. Calhoun, F. G., Carlisle, V. W., Luna, C., 1972, Properties and genesis of selected Columbian Andosols, Soil Sci. Soc. Amer. Proc., 36, 480-485. https://doi.org/10.2136/sssaj1972.03615995003600030032x
  7. Cottenie, A., Verloo, M., 1984, Analytical diagnosis of soil pollution with heavy metals, Fresenius J. Anal. Chem., 317, 389-393. https://doi.org/10.1007/BF00494504
  8. Doelsch, E., Macary, H. S., de Kerchove, V. V., 2006, Sources of very high metal content in soils of volcanic island (La Reunion), J. Geochem. Explor., 88, 194-197. https://doi.org/10.1016/j.gexplo.2005.08.037
  9. Filgueiras, A. V., Lavilla, I., Bendicho, C., 2002, Chemical sequential extraction for metal partitioning in environmental solid samples, J. Environ. Monit., 4, 823-857. https://doi.org/10.1039/b207574c
  10. Gleyzes, C., Tellier, S. M., Astruc, M., 2002, Fractionation studies of trace elements in contaminated soils and sediments: A Review of sewuential extraction procedure, Trend Anal. Chem., 21, 451-467. https://doi.org/10.1016/S0165-9936(02)00603-9
  11. Hall, G. E. M., Pelchat, P., 1999, Comparability of results obtained by the use of different selective extraction schemer for the determination of element forms in soils, Water, Air, and Soil Pollution, 112, 41-53. https://doi.org/10.1023/A:1005001131472
  12. Hong, C. O., Gutierrez, J., Yun, S. W., Lee, Y. B., Yu, C., 2009, Heavy metal contamination of arable soil and corn plant in the vicinity of a zink smelting factory and stabilization by liming, Arch. Environ. Contam. Toxicol., 56, 190-200. https://doi.org/10.1007/s00244-008-9195-5
  13. Hyun, I. K., Yang, C. S., Yun, S. T., Kim, H., Lee, M. G., Kam, S. K., 2016a, Characteristics of vanadium leaching from basaltic soils of Jeju Island, Korea, J. Environ. Sci. Int., 25, 1541-1554. https://doi.org/10.5322/JESI.2016.25.11.1541
  14. Hyun, I. K., Yun, S. T., Kim, H., Kam, S. K., 2016b, Occurrence of vanadium in groundwater of Jeju Island, Korea, J. Environ. Sci. Int., 25, 1563-1573. https://doi.org/10.5322/JESI.2016.25.11.1563
  15. Jeong, S. K., An, J. S., Kim, Y. J., Kim, G. H., Choi, S. I., Nam, K. P., 2011, Study on heavy metal contamination characteristics and bioavailability for soils in the Janghang smelter area, J. Soil & Groundwater Environ., 16, 42-50.
  16. Jung, M. C., 1994, Sequential extraction of heavy metals in soils and a case study, Ecol. Environ. Geol., 27, 469-477.
  17. Kennedy, H., Sanchez, A. L., Oughton, D. H., Rowland, A. P., 1997, Use of single and sequential chemical extractants to assess radionucleonide and heavy metal availability from soils for root uptake, Analyst, 122, 89-100. https://doi.org/10.1039/a605155c
  18. Kim, S. R., Hyun, S. S., Song, S. T., Lee, M. G., Kam, S. K., 2015, Concentration of heavy metals in natural soils of Jeju Island, Korea, J. Environ. Sci. Int., 24(2), 175-188. https://doi.org/10.5322/JESI.2015.24.2.175
  19. Lee, B. K., Koh, I. H., Kim, H. A., 2005, The partitioning characteristics of heavy metals in soil of Ulsan by sequential extraction procedures, Korean Soc. Environ. Eng. Res., 27, 25-35.
  20. Li, J. X., Yang, X. E., He, Z. L., Jilani, G., Sun, C. Y., Chen, S. M., 2007, Fractionation of lead in paddy soils and its bioavailability to rice plants, Geoderma, 141, 174-180. https://doi.org/10.1016/j.geoderma.2007.05.006
  21. Liu, G., Wang, J., Zhang, E., Hou, J., Liu, X., 2016, Heavy metal speciation and risk assessment in dry land and paddy soils near mining areas at Southern China, Environ. Sci. Pollut. Res., 23, 8709-8720. https://doi.org/10.1007/s11356-016-6114-6
  22. Ministry of Environment, 2005, Soil measuring network and results of research on the actual condition in 2004.
  23. Ministry of Environment, 2006, Results of detailed research for the areas exceeding soil contamination warning standards in 2005.
  24. Narwal, R. P., Singh, B. R., Salbu, B., 1999, Association of cadmium, zinc, copper, and nickel with components in naturally heavy metal-rich soils studied by parallel and sequential extractions, Communications in Soil Sci. Plant Anal., 30, 1209-1230. https://doi.org/10.1080/00103629909370279
  25. Nelson, A., Donkin, P., 1985, Processes of bioaccumulation: The importance of chemical speciation, Mar. Pollut. Bull., 16, 164-169. https://doi.org/10.1016/0025-326X(85)90008-6
  26. Ratuzny, T., Gong, Z., Wilke, B. M., 2009, Total concentrations and speciation of heavy metals in soils of Shenyang Zhangshi Irrigation Area, China, Environ. Monitor. Assess., 156, 171-180. https://doi.org/10.1007/s10661-008-0473-5
  27. Rauret, G., Lopez-Sanchez, J. F., Sahuquillo, A., Rubio, R., Davidson, C., Ure, A., Quevauviller, P., 1999, Improvement of the BCR three step sequential extraction procedure prior to the centrification of new sediment and soil reference materials, J. Environ. Monitor., 1, 57-61. https://doi.org/10.1039/a807854h
  28. Rodriguez, L., Ruiz, E., Alonso-Azcarate, J., Rincon, J., 2009, Heavy metal distribution and chemical speciation in tailings and soils around a Pb-Zn mine in Spain, J. Environ. Manage., 90, 1106-1116. https://doi.org/10.1016/j.jenvman.2008.04.007
  29. Shaheen, S. M., Rinklebe, J., Rupp, H., Meissner, R., 2014, Temporal dynamics of pore water concentrations of Cd, Co, Cu, Ni, and Zn and their controlling factors in a contaminated floodplain soil assessed by undisturbed groundwater lysimeters, Environ. Pollut., 191, 223-231. https://doi.org/10.1016/j.envpol.2014.04.035
  30. Singh, J., Kalamdhad, A. S., 2013, Chemical speciation of heavy metals in compost and compost amended soil-A Review, Int. J. Environ. Eng. Res., 2, 27-37.
  31. Soon, Y. K., Abboud, S., 1990, Trace elements in agricultural soils of North-western Alberta, Can. J. Soil Sci., 70, 277-288. https://doi.org/10.4141/cjss90-029
  32. Takeda, A., Kimura, K., Yamasaki, S., 2004, Analysis of 57 elements in Japanese soils, with special reference in soil group and agriculture use, Geoderma, 119, 291-307. https://doi.org/10.1016/j.geoderma.2003.08.006
  33. Tessier, A., Camppbell, P. G. C., Bisson, M., 1979, Sequential extraction procedure for the speciation of particulate trace metals, Anal. Chem., 51, 844-851. https://doi.org/10.1021/ac50043a017
  34. Ure, A. M., Davidson, C. M., 2002, Chemical speciation in soils and related materials by selective chemical extraction, in: Ure, A. M., Davidson, C. M. (eds.), Chemical Speciation in the Environment, Blackwell, Oxford, 265-300.
  35. Walkley, A., Black, I. A., 1934, An Examination of the Degtjareff method for determining soil organic matter and a proposed modification of the chromic acid titration method, Soil Sci., 37, 29-38. https://doi.org/10.1097/00010694-193401000-00003
  36. Zheljazkov, A., Jeliazkova, E. A., Kovacheva, N., Dzhurmanski, A., 2008, Metal uptake by medicinal plant species grown in soils contaminated by a smelter, Environ. Exp. Bot., 64, 207-216. https://doi.org/10.1016/j.envexpbot.2008.07.003
  37. Zimmerman, A. J., Weindorf, D. C., 2010, Heavy metal and trace metal analysis in soil by sequential extraction: A Review of precedures, Int. J. Anal. Chem., 2010, 1-7.