참고문헌
- H. Abels, A universal proper G-space, Math. Z. 159 (1978), no. 2, 143-158. https://doi.org/10.1007/BF01214487
- A. Adem and Y. Ruan, Twisted orbifold K-theory, Comm. Math. Phys. 237 (2003), no. 3, 533-556. https://doi.org/10.1007/s00220-003-0849-x
- A. Bartels, T. Farrell, L. Jones, and H. Reich, On the isomorphism conjecture in algebraic K-theory, Topology 43 (2004), no. 1, 157-213. https://doi.org/10.1016/S0040-9383(03)00032-6
- A. Bartels and D. Rosenthal, On the K-theory of groups with nite asymptotic dimension, J. Reine Angew. Math. 612 (2007), 35-57.
-
P. Baum, A. Connes, and N. Higson, Classifying space for proper actions and K-theory of group
$C^*$ -algebras, In$C^*$ -algebras: 1943-1993 (San Antonio, TX, 1993), volume 167 of Contemp. Math., pages 240-291. Amer. Math. Soc., Providence, RI, 1994. - A. Borel and Harish-Chandra, Arithmetic subgroups of algebraic groups, Ann. of Math. (2) 75 (1962), 485-535. https://doi.org/10.2307/1970210
- A. Borel and L. Ji, Compactifications of symmetric and locally symmetric spaces, Mathematics: Theory & Applications. Birkhauser Boston Inc., Boston, MA, 2006.
- A. Borel and L. Ji, Compactifications of symmetric spaces, J. Differential Geom. 75 (2007), no. 1, 1-56. https://doi.org/10.4310/jdg/1175266253
- A. Borel and J.-P. Serre, Corners and arithmetic groups, Comment. Math. Helv. 48 (1973), 436-491. https://doi.org/10.1007/BF02566134
- K. Corlette, Archimedean superrigidity and hyperbolic geometry, Ann. of Math. (2) 135 (1992), no. 1, 165-182. https://doi.org/10.2307/2946567
- P. Deligne and G. D. Mostow, Monodromy of hypergeometric functions and nonlattice integral monodromy, Inst. Hautes Etudes Sci. Publ. Math. 63 (1986), 5-89. https://doi.org/10.1007/BF02831622
- M. Deraux, J. R. Parker, and J. Paupert, Census of the complex hyperbolic sporadic triangle groups, Exp. Math. 20 (2011), no. 4, 467-486. https://doi.org/10.1080/10586458.2011.565262
- H. Garland and M. S. Raghunathan, Fundamental domains for lattices in (R-)rank 1 semisimple Lie groups, Ann. of Math. (2) 92 (1970), 279-326. https://doi.org/10.2307/1970838
- M. Gromov and I. Piatetski-Shapiro, Nonarithmetic groups in Lobachevsky spaces, Inst. Hautes Etudes Sci. Publ. Math. 66 (1988), 93-103.
- M. Gromov and R. Schoen, Harmonic maps into singular spaces and p-adic superrigidity for lattices in groups of rank one, Inst. Hautes Etudes Sci. Publ. Math. 76 (1992), 165-246. https://doi.org/10.1007/BF02699433
- S. Helgason, Differential geometry, Lie groups, and symmetric spaces, Volume 34 of Graduate Studies in Mathematics, American Mathematical Society, Providence, RI, 2001.
- N. Higson, The Baum-Connes conjecture, In Proceedings of the International Congress of Mathematicians, Vol. II (Berlin, 1998), Doc. Math. Extra Vol. II (1998), 637-646.
- D. Husemoller, M. Joachim, B. Jurco, and M. Schottenloher, Basic bundle theory and K-cohomology invariants, Volume 726 of Lecture Notes in Physics, Springer, Berlin, 2008.
- S. Illman, Existence and uniqueness of equivariant triangulations of smooth proper G-manifolds with some applications to equivariant Whitehead torsion, J. Reine Angew. Math. 524 (2000), 129-183.
- L. Ji, Integral Novikov conjectures and arithmetic groups containing torsion elements, Comm. Anal. Geom. 15 (2007), no. 3, 509-533. https://doi.org/10.4310/CAG.2007.v15.n3.a3
- L. Ji and S. A. Wolpert, A cofinite universal space for proper actions for mapping class groups, In the tradition of Ahlfors-Bers. V, volume 510 of Contemp. Math., pages 151-163. Amer. Math. Soc., Providence, RI, 2010.
- G. G. Kasparov, Equivariant KK-theory and the Novikov conjecture, Invent. Math. 91 (1988), no. 1, 147-201. https://doi.org/10.1007/BF01404917
- S. P. Kerckhoff, The Nielsen realization problem, Bull. Amer. Math. Soc. (N.S.) 2 (1980), no. 3, 452-454. https://doi.org/10.1090/S0273-0979-1980-14764-3
- A. W. Knapp, Lie groups beyond an introduction, Volume 140 of Progress in Mathematics, Birkhauser Boston, Inc., Boston, MA, second edition, 2002.
- M. Kreck and W. Luck, The Novikov conjecture, Volume 33 of Oberwolfach Seminars, Birkhauser Verlag, Basel, 2005.
- S. Krstic and K. Vogtmann, Equivariant outer space and automorphisms of free-by-finite groups, Comment. Math. Helv. 68 (1993), no. 2, 216-262. https://doi.org/10.1007/BF02565817
- W. Luck, Survey on classifying spaces for families of subgroups, In Infinite groups: geometric, combinatorial and dynamical aspects, volume 248 of Progr. Math., pages 269-322, Birkhauser, Basel, 2005.
- W. Luck, On the classifying space of the family of virtually cyclic subgroups for CAT(0)-groups, Munster J. Math. 2 (2009), 201-214.
- W. Luck and H. Reich, The Baum-Connes and the Farrell-Jones conjectures in K- and L-theory, In Handbook of K-theory. Vol. 1, 2, pages 703-842, Springer, Berlin, 2005.
- V. S. Makarov, On a certain class of discrete groups of Lobacevskiispace having an infinite fundamental region of finite measure, Dokl. Akad. Nauk SSSR 167 (1966), 30-33.
- G. A. Margulis, Arithmeticity of the irreducible lattices in the semisimple groups of rank greater than 1, Invent. Math. 76 (1984), no. 1, 93-120. https://doi.org/10.1007/BF01388494
- G. A. Margulis, Discrete subgroups of semisimple Lie groups, Volume 17 of Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], Springer-Verlag, Berlin, 1991.
- D. Meintrup and T. Schick, A model for the universal space for proper actions of a hyperbolic group, New York J. Math. 8 (2002), 1-7.
- J. Milnor, Construction of universal bundles. I, Ann. of Math. (2) 63 (1956), 272-284. https://doi.org/10.2307/1969609
- J. Milnor, Construction of universal bundles. II, Ann. of Math. (2) 63 (1956), 430-436. https://doi.org/10.2307/1970012
- G. D. Mostow, Existence of a nonarithmetic lattice in SU(2; 1), Proc. Nat. Acad. Sci. U.S.A. 75 (1978), no. 7, 3029-3033. https://doi.org/10.1073/pnas.75.7.3029
- G. D. Mostow, Existence of nonarithmetic monodromy groups, Proc. Nat. Acad. Sci. U.S.A. 78 (1981), no. 10, 5948-5950. https://doi.org/10.1073/pnas.78.10.5948
- A. L. Onishchik and E. B. Vinberg, Lie groups and Lie algebras. II, Volume 41 of Encyclopaedia of Mathematical Sciences, Springer-Verlag, 2000.
- J. R. Parker, Complex hyperbolic lattices, In Discrete groups and geometric structures, volume 501 of Contemp. Math., pages 1-42, Amer. Math. Soc., Providence, RI, 2009.
- M. S. Raghunathan, Discrete subgroups of Lie groups, Springer-Verlag, New York-Heidelberg, 1972.
-
O. P. Ruzmanov, Examples of nonarithmetic crystallographic Coxeter groups in n-dimensional Lobachevskii space when
$6\;{\leq}\;n\;{\leq}\;10$ , In Problems in group theory and in homological algebra, pages 138-142, Yaroslav. Gos. Univ., 1989. - J. R. Stallings, On torsion-free groups with infinitely many ends, Ann. of Math. (2) 88 (1968), 312-334. https://doi.org/10.2307/1970577
- R. G. Swan, Groups of cohomological dimension one, J. Algebra 12 (1969), 585-610. https://doi.org/10.1016/0021-8693(69)90030-1
- A. Valette, Introduction to the Baum-Connes conjecture, Lectures in Mathematics ETH Zurich. Birkhauser Verlag, Basel, 2002.
- V. S. Varadarajan, Lie groups, Lie algebras, and their representations, Volume 102 of Graduate Texts in Mathematics, Springer-Verlag, New York, 1984.
- C. T. C. Wall, Finiteness conditions for CW-complexes, Ann. of Math. (2) 81 (1965), 56-69. https://doi.org/10.2307/1970382
- T. White, Fixed points of finite groups of free group automorphisms, Proc. Amer. Math. Soc. 118 (1993), no. 3, 681-688. https://doi.org/10.1090/S0002-9939-1993-1164152-7
- G. Yu, The Novikov conjecture for groups with finite asymptotic dimension, Ann. of Math. (2) 147 (1998), no. 2, 325-355. https://doi.org/10.2307/121011