Browse > Article
http://dx.doi.org/10.4134/CKMS.c160222

COFINITE PROPER CLASSIFYING SPACES FOR LATTICES IN SEMISIMPLE LIE GROUPS OF ℝ-RANK 1  

Kang, Hyosang (College of Transdisciplinary Studies DGIST)
Publication Information
Communications of the Korean Mathematical Society / v.32, no.3, 2017 , pp. 745-763 More about this Journal
Abstract
The Borel-Serre partial compactification gives cofinite models for the proper classifying space for arithmetic lattices. Non-arithmetic lattices arise only in semisimple Lie groups of ${\mathbb{R}}$-rank one. The author generalizes the Borel-Serre partial compactification to construct cofinite models for the proper classifying space for lattices in semisimple Lie groups of ${\mathbb{R}}$-rank one by using the reduction theory of Garland and Raghunathan.
Keywords
partial compactification; reduction theory; Lattices in Lie groups; proper classifying spaces;
Citations & Related Records
연도 인용수 순위
  • Reference
1 A. Borel and L. Ji, Compactifications of symmetric and locally symmetric spaces, Mathematics: Theory & Applications. Birkhauser Boston Inc., Boston, MA, 2006.
2 A. Borel and L. Ji, Compactifications of symmetric spaces, J. Differential Geom. 75 (2007), no. 1, 1-56.   DOI
3 A. Borel and J.-P. Serre, Corners and arithmetic groups, Comment. Math. Helv. 48 (1973), 436-491.   DOI
4 K. Corlette, Archimedean superrigidity and hyperbolic geometry, Ann. of Math. (2) 135 (1992), no. 1, 165-182.   DOI
5 P. Deligne and G. D. Mostow, Monodromy of hypergeometric functions and nonlattice integral monodromy, Inst. Hautes Etudes Sci. Publ. Math. 63 (1986), 5-89.   DOI
6 M. Deraux, J. R. Parker, and J. Paupert, Census of the complex hyperbolic sporadic triangle groups, Exp. Math. 20 (2011), no. 4, 467-486.   DOI
7 H. Garland and M. S. Raghunathan, Fundamental domains for lattices in (R-)rank 1 semisimple Lie groups, Ann. of Math. (2) 92 (1970), 279-326.   DOI
8 M. Gromov and I. Piatetski-Shapiro, Nonarithmetic groups in Lobachevsky spaces, Inst. Hautes Etudes Sci. Publ. Math. 66 (1988), 93-103.
9 M. Gromov and R. Schoen, Harmonic maps into singular spaces and p-adic superrigidity for lattices in groups of rank one, Inst. Hautes Etudes Sci. Publ. Math. 76 (1992), 165-246.   DOI
10 S. Helgason, Differential geometry, Lie groups, and symmetric spaces, Volume 34 of Graduate Studies in Mathematics, American Mathematical Society, Providence, RI, 2001.
11 N. Higson, The Baum-Connes conjecture, In Proceedings of the International Congress of Mathematicians, Vol. II (Berlin, 1998), Doc. Math. Extra Vol. II (1998), 637-646.
12 D. Husemoller, M. Joachim, B. Jurco, and M. Schottenloher, Basic bundle theory and K-cohomology invariants, Volume 726 of Lecture Notes in Physics, Springer, Berlin, 2008.
13 S. Illman, Existence and uniqueness of equivariant triangulations of smooth proper G-manifolds with some applications to equivariant Whitehead torsion, J. Reine Angew. Math. 524 (2000), 129-183.
14 L. Ji, Integral Novikov conjectures and arithmetic groups containing torsion elements, Comm. Anal. Geom. 15 (2007), no. 3, 509-533.   DOI
15 L. Ji and S. A. Wolpert, A cofinite universal space for proper actions for mapping class groups, In the tradition of Ahlfors-Bers. V, volume 510 of Contemp. Math., pages 151-163. Amer. Math. Soc., Providence, RI, 2010.
16 G. G. Kasparov, Equivariant KK-theory and the Novikov conjecture, Invent. Math. 91 (1988), no. 1, 147-201.   DOI
17 S. P. Kerckhoff, The Nielsen realization problem, Bull. Amer. Math. Soc. (N.S.) 2 (1980), no. 3, 452-454.   DOI
18 A. W. Knapp, Lie groups beyond an introduction, Volume 140 of Progress in Mathematics, Birkhauser Boston, Inc., Boston, MA, second edition, 2002.
19 M. Kreck and W. Luck, The Novikov conjecture, Volume 33 of Oberwolfach Seminars, Birkhauser Verlag, Basel, 2005.
20 S. Krstic and K. Vogtmann, Equivariant outer space and automorphisms of free-by-finite groups, Comment. Math. Helv. 68 (1993), no. 2, 216-262.   DOI
21 G. A. Margulis, Discrete subgroups of semisimple Lie groups, Volume 17 of Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], Springer-Verlag, Berlin, 1991.
22 W. Luck, Survey on classifying spaces for families of subgroups, In Infinite groups: geometric, combinatorial and dynamical aspects, volume 248 of Progr. Math., pages 269-322, Birkhauser, Basel, 2005.
23 W. Luck, On the classifying space of the family of virtually cyclic subgroups for CAT(0)-groups, Munster J. Math. 2 (2009), 201-214.
24 W. Luck and H. Reich, The Baum-Connes and the Farrell-Jones conjectures in K- and L-theory, In Handbook of K-theory. Vol. 1, 2, pages 703-842, Springer, Berlin, 2005.
25 V. S. Makarov, On a certain class of discrete groups of Lobacevskiispace having an infinite fundamental region of finite measure, Dokl. Akad. Nauk SSSR 167 (1966), 30-33.
26 G. A. Margulis, Arithmeticity of the irreducible lattices in the semisimple groups of rank greater than 1, Invent. Math. 76 (1984), no. 1, 93-120.   DOI
27 D. Meintrup and T. Schick, A model for the universal space for proper actions of a hyperbolic group, New York J. Math. 8 (2002), 1-7.
28 J. Milnor, Construction of universal bundles. I, Ann. of Math. (2) 63 (1956), 272-284.   DOI
29 J. Milnor, Construction of universal bundles. II, Ann. of Math. (2) 63 (1956), 430-436.   DOI
30 G. D. Mostow, Existence of a nonarithmetic lattice in SU(2; 1), Proc. Nat. Acad. Sci. U.S.A. 75 (1978), no. 7, 3029-3033.   DOI
31 M. S. Raghunathan, Discrete subgroups of Lie groups, Springer-Verlag, New York-Heidelberg, 1972.
32 G. D. Mostow, Existence of nonarithmetic monodromy groups, Proc. Nat. Acad. Sci. U.S.A. 78 (1981), no. 10, 5948-5950.   DOI
33 A. L. Onishchik and E. B. Vinberg, Lie groups and Lie algebras. II, Volume 41 of Encyclopaedia of Mathematical Sciences, Springer-Verlag, 2000.
34 J. R. Parker, Complex hyperbolic lattices, In Discrete groups and geometric structures, volume 501 of Contemp. Math., pages 1-42, Amer. Math. Soc., Providence, RI, 2009.
35 A. Valette, Introduction to the Baum-Connes conjecture, Lectures in Mathematics ETH Zurich. Birkhauser Verlag, Basel, 2002.
36 O. P. Ruzmanov, Examples of nonarithmetic crystallographic Coxeter groups in n-dimensional Lobachevskii space when $6\;{\leq}\;n\;{\leq}\;10$, In Problems in group theory and in homological algebra, pages 138-142, Yaroslav. Gos. Univ., 1989.
37 J. R. Stallings, On torsion-free groups with infinitely many ends, Ann. of Math. (2) 88 (1968), 312-334.   DOI
38 R. G. Swan, Groups of cohomological dimension one, J. Algebra 12 (1969), 585-610.   DOI
39 V. S. Varadarajan, Lie groups, Lie algebras, and their representations, Volume 102 of Graduate Texts in Mathematics, Springer-Verlag, New York, 1984.
40 C. T. C. Wall, Finiteness conditions for CW-complexes, Ann. of Math. (2) 81 (1965), 56-69.   DOI
41 A. Bartels and D. Rosenthal, On the K-theory of groups with nite asymptotic dimension, J. Reine Angew. Math. 612 (2007), 35-57.
42 T. White, Fixed points of finite groups of free group automorphisms, Proc. Amer. Math. Soc. 118 (1993), no. 3, 681-688.   DOI
43 G. Yu, The Novikov conjecture for groups with finite asymptotic dimension, Ann. of Math. (2) 147 (1998), no. 2, 325-355.   DOI
44 H. Abels, A universal proper G-space, Math. Z. 159 (1978), no. 2, 143-158.   DOI
45 A. Adem and Y. Ruan, Twisted orbifold K-theory, Comm. Math. Phys. 237 (2003), no. 3, 533-556.   DOI
46 A. Bartels, T. Farrell, L. Jones, and H. Reich, On the isomorphism conjecture in algebraic K-theory, Topology 43 (2004), no. 1, 157-213.   DOI
47 P. Baum, A. Connes, and N. Higson, Classifying space for proper actions and K-theory of group $C^*$-algebras, In $C^*$-algebras: 1943-1993 (San Antonio, TX, 1993), volume 167 of Contemp. Math., pages 240-291. Amer. Math. Soc., Providence, RI, 1994.
48 A. Borel and Harish-Chandra, Arithmetic subgroups of algebraic groups, Ann. of Math. (2) 75 (1962), 485-535.   DOI