DOI QR코드

DOI QR Code

ON OPERATORS SATISFYING Tm(T|T|2kT)1/(k+1)Tm ≥ Tm|T|2Tm

  • Rashid, Mohammad H.M. (Department of Mathematics & Statistics Faculty of Science P.O.Box(7) Mu'tah University)
  • Received : 2016.09.17
  • Accepted : 2016.12.09
  • Published : 2017.07.31

Abstract

Let T be a bounded linear operator acting on a complex Hilbert space ${\mathfrak{H}}$. In this paper we introduce the class, denoted ${\mathcal{Q}}(A(k),m)$, of operators satisfying $T^{m{\ast}}(T^{\ast}{\mid}T{\mid}^{2k}T)^{1/(k+1)}T^m{\geq}T^{{\ast}m}{\mid}T{\mid}^2T^m$, where m is a positive integer and k is a positive real number and we prove basic structural properties of these operators. Using these results, we prove that if P is the Riesz idempotent for isolated point ${\lambda}$ of the spectrum of $T{\in}{\mathcal{Q}}(A(k),m)$, then P is self-adjoint, and we give a necessary and sufficient condition for $T{\otimes}S$ to be in ${\mathcal{Q}}(A(k),m)$ when T and S are both non-zero operators. Moreover, we characterize the quasinilpotent part $H_0(T-{\lambda})$ of class A(k) operator.

Keywords

References

  1. P. Aiena, Fredholm and Local Spectral Theory with Applications to Multipliers, Kluwer, 2004.
  2. A. Aluthge and D. Wang, w-hyponormal operators, Integral Equations Operator Theory 36 (2000), no. 1, 1-10. https://doi.org/10.1007/BF01236285
  3. T. Ando, Operators with a norm condition, Acta Sci. Math. (Szeged) 33 (1972), 169-178.
  4. E. Bishop, A duality theorem for an arbitrary operator, Pacific J. Math. 9 (1959), no. 2, 379-397. https://doi.org/10.2140/pjm.1959.9.379
  5. M. Cho and T. Yamazaki, An operator transform from class A to the class of hyponormal operators and its application, Integral Equation Operator Theory 53 (2005), no. 4, 497-508. https://doi.org/10.1007/s00020-004-1332-6
  6. J. B. Conway, A course in Functional Analysis, Springer-Verlag, New York, 1985.
  7. J. K. Finch, The single valued extension property on a Banach space, Pacific J. Math. 58 (1975), no. 1, 61-69. https://doi.org/10.2140/pjm.1975.58.61
  8. M. Fujii, D. Jung, S. H. Lee, M. Y. Lee, and R. Nakamoto, Some classes of operators related to paranormal and log-hyponormal operators, Math. Japon. 51 (2000), no. 3, 395-402.
  9. T. Furuta, M. Ito, and T. Yamazaki, A subclass of paranormal operators including class of log-hyponormal and several related classes, Sci. Math. 1 (1998), no. 3, 389-403.
  10. M. Ito, Some classes of operators associated with generalized Aluthge transformation, SUT J. Math. 35 (1999), no. 1, 149-165.
  11. I. H. Jeon and B. P. Duggal, On operators with an absolute value condition, J. Korean Math. Soc. 41 (2004), no. 4, 617-627. https://doi.org/10.4134/JKMS.2004.41.4.617
  12. I. H. Jeon and I. H. Kim, On operators satisfying $T*|T^2|T\;{\geq}\;T*|T|^2T$, Linear AlgebraAppl. 418 (2006), no. 2-3, 854-862. https://doi.org/10.1016/j.laa.2006.02.040
  13. F. Hansen, An equality, Math. Ann. 246 (1980), 249-250. https://doi.org/10.1007/BF01371046
  14. J.-C. Hou, On the tensor products of operators, Acta Math. Sinica (N.S.) 9 (1993), no. 2, 195-202. https://doi.org/10.1007/BF02560050
  15. I. H. Kim, Tensor products of log-hyponormal operators, Bull. Korean Math. Soc. 42 (2005), no. 2, 269-277. https://doi.org/10.4134/BKMS.2005.42.2.269
  16. I. H. Kim, Weyl's theorem and tensor product for operators satisfying $T*^{k}|T^2|T^k\;{\geq}\;T*^k|T|^2T^k$, J. Korean Math. Soc. 47 (2010), no. 2, 351-361. https://doi.org/10.4134/JKMS.2010.47.2.351
  17. F. Kimura, Analysis of non-normal operators via Aluthge transformation, Integral Equations Operator Theory 50 (1995), no. 3, 375-384. https://doi.org/10.1007/s00020-003-1231-2
  18. K. B. Laursen, Operators with finite ascent, Pacific J. Math. 152 (1992), no. 2, 323-336. https://doi.org/10.2140/pjm.1992.152.323
  19. K. B. Laursen and M. M. Neumann, An Introduction to Local Spectral Theory, Oxford, Clarendon, 2000.
  20. M. H. M. Rashid, Property (w) and quasi-class (A, k) operators, Rev. Un. Mat. Argentina 52 (2011), no. 1, 133-142.
  21. M. H. M. Rashid, Weyl's theorem for algebraically wF(p, r, q) operators with p, r > 0 and $q\;{\geq}\;1$, Ukrainian Math. J. 63 (2011), no. 8, 1256-1267. https://doi.org/10.1007/s11253-012-0576-6
  22. M. H. M. Rashid and H. Zguitti, Weyl type theorems and class A(s, t) operators, Math. Inequal. Appl. 14 (2011), no. 3, 581-594.
  23. T. Saito, Hyponormal operators and Related topics, Lecture notes in Mathematics, vol. 247, Springer-Verlag, 1971.
  24. J. G. Stampfli, Hyponormal operators and spectral density, Trans. Amer. Math. Soc. 117 (1965), 469-476. https://doi.org/10.1090/S0002-9947-1965-0173161-3
  25. J. Stochel, Seminormality of operators from their tensor product, Proc. Amer. Math. Soc. 124 (1996), no. 1, 135-140. https://doi.org/10.1090/S0002-9939-96-03017-1
  26. K. Tanahashi, I. H. Jeon, I. H. Kim, and A. Uchiyama, Quasinilpotent part of class A or (p, k)-quasihyponormal, Operator Theory: Advances Appl. 187 (2008), 199-210.
  27. A. Uchiyama and K. Tanahashi, On the Riesz idempotent of class A operators, Math. Inequal. Appl. 5 (2002), no. 2, 291-298.