DOI QR코드

DOI QR Code

에어로졸 분무열분해법을 이용한 코발트페라이트-그래핀 복합체 분말 제조 및 슈퍼커패시터 응용

Preparation of CoFe2O4-Graphene Composites using Aerosol Spray Pyrolysis for Supercapacitors Application

  • 이총민 (한국지질자원연구원 자원활용연구센터) ;
  • 장한권 (한국지질자원연구원 자원활용연구센터) ;
  • 장희동 (한국지질자원연구원 자원활용연구센터)
  • Lee, Chongmin (Resources Utilization Research Center, Korea Institute of Geoscience and Mineral Resources) ;
  • Chang, Hankwon (Resources Utilization Research Center, Korea Institute of Geoscience and Mineral Resources) ;
  • Jang, Hee Dong (Resources Utilization Research Center, Korea Institute of Geoscience and Mineral Resources)
  • 투고 : 2017.03.10
  • 심사 : 2017.03.22
  • 발행 : 2017.03.31

초록

Cobalt-iron oxides have emerged as alternative electrode materials for supercapacitors because they have advantages of low cost, natural abundance, and environmental friendliness. Graphene loaded with cobalt ferrite ($CoFe_2O_4$) nanoparticles can exhibit enhanced specific capacitance. In this study, we present three-dimensional (3D) crumpled graphene (CGR) decorated with $CoFe_2O_4$ nanoparticles. The $CoFe_2O_4$-graphene composites were synthesized from a colloidal mixture of GO, iron (III) chloride hexahydrate ($FeCl_3{\cdot}6H_2O$) and cobalt chloride hexahydrate ($CoCl_2{\cdot}6H_2O$) respectively, via one step aerosol spray pyrolysis. Size of $CoFe_2O_4$ nanoparticles was ranged from 5 nm to 10 nm when loaded onto 500 nm CGR. The electrochemical performance of the $CoFe_2O_4$-graphene composites was examined. The $CoFe_2O_4$-graphene composite electrode showed the specific capacitance of $253F\;g^{-1}$.

키워드

참고문헌

  1. Zhang, L. L., & Zhao, X. S. (2009). Carbon-based materials as supercapacitor electrodes. Chemical Society Reviews, 38(9), 2520-2531. https://doi.org/10.1039/b813846j
  2. Chen, H., Hu, L., Chen, M., Yan, Y., & Wu, L. (2014). Nickel-Cobalt Layered Double Hydroxide Nanosheets for High‐performance Supercapacitor Electrode Materials. Advanced Functional Materials, 24(7), 934-942. https://doi.org/10.1002/adfm.201301747
  3. Xia, K., Gao, Q., Jiang, J., & Hu, J. (2008). Hierarchical porous carbons with controlled micropores and mesopores for supercapacitor electrode materials. Carbon, 46(13), 1718-1726. https://doi.org/10.1016/j.carbon.2008.07.018
  4. Mastragostino, M., Arbizzani, C., & Soavi, F. (2002). Conducting polymers as electrode materials in supercapacitors. Solid state ionics, 148(3), 493-498. https://doi.org/10.1016/S0167-2738(02)00093-0
  5. Jiang, J., Li, Y., Liu, J., Huang, X., Yuan, C., & Lou, X. W. D. (2012). Recent advances in metal oxidebased electrode architecture design for electrochemical energy storage. Advanced materials, 24(38), 5166-5180. https://doi.org/10.1002/adma.201202146
  6. Xu, J., Gao, L., Cao, J., Wang, W., & Chen, Z. (2010). Preparation and electrochemical capacitance of cobalt oxide ($Co_3O_4$) nanotubes as supercapacitor material. Electrochimica Acta, 56(2), 732-736. https://doi.org/10.1016/j.electacta.2010.09.092
  7. Zhi, M., Xiang, C., Li, J., Li, M., & Wu, N. (2013). Nanostructured carbon–metal oxide composite electrodes for supercapacitors: a review. Nanoscale, 5(1), 72-88. https://doi.org/10.1039/C2NR32040A
  8. Kumbhar, V. S., Jagadale, A. D., Shinde, N. M., & Lokhande, C. D. (2012). Chemical synthesis of spinel cobalt ferrite ($CoFe_2O_4$) nano-flakes for supercapacitor application. Applied Surface Science, 259, 39-43. https://doi.org/10.1016/j.apsusc.2012.06.034
  9. Wu, H. B., Pang, H., & Lou, X. W. D. (2013). Facile synthesis of mesoporous $Ni_{0.3}Co_{2.7}O_4$ hierarchical structures for high-performance supercapacitors. Energy & Environmental Science, 6(12), 3619-3626. https://doi.org/10.1039/c3ee42101e
  10. Sahoo, S., & Shim, J. J. (2016). Facile Synthesis of Three-Dimensional Ternary $ZnCo_2O_4$/Reduced Graphene Oxide/NiO Composite Film on Nickel Foam for Next Generation Supercapacitor Electrodes. ACS Sustainable Chemistry & Engineering.
  11. Xiao, Y., Li, X., Zai, J., Wang, K., Gong, Y., Li, B., ... & Qian, X. (2014). $CoFe_2O_4$-graphene nanocomposites synthesized through an ultrasonic method with enhanced performances as anode materials for Li-ion batteries. Nano-Micro Letters, 6(4), 307-315. https://doi.org/10.1007/s40820-014-0003-7
  12. He, P., Yang, K., Wang, W., Dong, F., Du, L., & Deng, Y. (2013). Reduced graphene oxide-$CoFe_2O_4$ composites for supercapacitor electrode. Russian Journal of Electrochemistry, 49(4), 359-364. https://doi.org/10.1134/S1023193513040101
  13. Wu, Z. S., Zhou, G., Yin, L. C., Ren, W., Li, F., & Cheng, H. M. (2012). Graphene/metal oxide composite electrode materials for energy storage. Nano Energy, 1(1), 107-131. https://doi.org/10.1016/j.nanoen.2011.11.001
  14. Hummers Jr, W. S., & Offeman, R. E. (1958). Preparation of graphitic oxide. Journal of the American Chemical Society, 80(6), 1339-1339. https://doi.org/10.1021/ja01539a017
  15. Liang, Y., Li, Y., Wang, H., Zhou, J., Wang, J., Regier, T., & Dai, H. (2011). $Co_3O_4$ nanocrystals on graphene as a synergistic catalyst for oxygen reduction reaction. Nature materials, 10(10), 780-786. https://doi.org/10.1038/nmat3087
  16. Li, Y., Hasin, P., & Wu, Y. (2010). $NixCo_{3−x}O_4$ nanowire arrays for electrocatalytic oxygen evolution. Advanced materials, 22(17), 1926-1929. https://doi.org/10.1002/adma.200903896
  17. Rai, A. K., Gim, J., Anh, L. T., & Kim, J. (2013). Partially reduced $Co_3O_4$/graphene nanocomposite as an anode material for secondary lithium ion battery. Electrochimica Acta, 100, 63-71. https://doi.org/10.1016/j.electacta.2013.03.140
  18. Liu, M. C., Kong, L. B., Lu, C., Li, X. M., Luo, Y. C., & Kang, L. (2012). A sol–gel process for fabrication of $NiO/NiCo_2O_4/Co_3O_4$ composite with improved electrochemical behavior for electrochemical capacitors. ACS applied materials & interfaces, 4(9), 4631-4636. https://doi.org/10.1021/am301010u
  19. Soofivand, F., & Salavati-Niasari, M. (2015). $Co_3O_4$/graphene nanocomposite: pre-graphenization synthesis and photocatalytic investigation of various magnetic nanostructures. RSC Advances, 5(79), 64346-64353. https://doi.org/10.1039/C5RA09504B
  20. Yermakov, A. Y., Boukhvalov, D. W., Uimin, M. A., Lokteva, E. S., Erokhin, A. V., & Schegoleva, N. N. (2013). Hydrogen Dissociation Catalyzed by Carbon‐Coated Nickel Nanoparticles: Experiment and Theory. ChemPhysChem, 14(2), 381-385. https://doi.org/10.1002/cphc.201200831
  21. Sun, Z., & Lu, X. (2012). A solid-state reaction route to anchoring $Ni(OH)_2$ nanoparticles on reduced graphene oxide sheets for supercapacitors. Industrial & Engineering Chemistry Research, 51(30), 9973-9979. https://doi.org/10.1021/ie202706h
  22. Wang, W. N., Jiang, Y., & Biswas, P. (2012). Evaporation-induced crumpling of graphene oxide nanosheets in aerosolized droplets: confinement force relationship. The journal of physical chemistry letters, 3(21), 3228-3233. https://doi.org/10.1021/jz3015869

피인용 문헌

  1. 에어로졸 공정을 이용한 오산화바나듐(V2O5)-그래핀 복합체 제조 및 슈퍼커패시터 응용 vol.16, pp.4, 2017, https://doi.org/10.11629/jpaar.2020.16.4.095