References
- Irish BM, Correll JC, Feng C, Bentley T, de Los Reyes BG. 2008. Characterization of a resistance locus (Pfs-1) to the spinach downy mildew pathogen (Peronospora farinosa f. sp. spinaciae) and development of a molecular marker linked to Pfs-1. Phytopathology 98: 894-900. https://doi.org/10.1094/PHYTO-98-8-0894
- Shi A, Mou B. 2016. Genetic diversity and association analysis of leafminer (Liriomyza langei) resistance in spinach (Spinacia oleracea). Genome 59: 581-588. https://doi.org/10.1139/gen-2016-0075
- Takahata S, Yago T, Iwabuchi K, Hirakawa H, Suzuki Y, Onodera Y. 2016. Comparison of spinach sex chromosomes with sugar beet autosomes reveals extensive synteny and low recombination at the male-determining locus. J. Hered. 107: 679-685. https://doi.org/10.1093/jhered/esw055
- Xu C, Jiao C, Zheng Y, Sun H, Liu W, Cai X, et al. 2015. De novo and comparative transcriptome analysis of cultivated and wild spinach. Sci. Rep. 5: 17706.
- Yan J, Yu L, Xuan J, Lu Y, Lu S, Zhu W. 2016. De novo transcriptome sequencing and gene expression profiling of spinach (Spinacia oleracea L.) leaves under heat stress. Sci. Rep. 6: 19473. https://doi.org/10.1038/srep19473
- Scholthof KB, Adkins S, Czosnek H, Palukaitis P, Jacquot E, Hohn T, et al. 2011. Top 10 plant viruses in molecular plant pathology. Mol. Plant Pathol. 12: 938-954. https://doi.org/10.1111/j.1364-3703.2011.00752.x
- Roossinck MJ. 2010. Lifestyles of plant viruses. Philos. Trans. R. Soc. Lond. B Biol. Sci. 365: 1899-1905. https://doi.org/10.1098/rstb.2010.0057
- Mihara T, Nishimura Y, Shimizu Y, Nishiyama H, Yoshikawa G, Uehara H, et al. 2016. Linking virus genomes with host taxonomy. Viruses 8: 66. https://doi.org/10.3390/v8030066
- Elbeaino T, Kubaa RA, Tuzlali HT, Digiaro M. 2016. Pittosporum cryptic virus 1: genome sequence completion using next-generation sequencing. Arch. Virol. 161: 2039-2042. https://doi.org/10.1007/s00705-016-2860-5
- Kim DS, Jung JY, Wang Y, Oh HJ, Choi D, Jeon CO, et al. 2014. Plant RNA virus sequences identified in kimchi by microbial metatranscriptome analysis. J. Microbiol. Biotechnol. 24: 979-986. https://doi.org/10.4014/jmb.1404.04017
- Liu H, Fu Y, Xie J, Cheng J, Ghabrial SA, Li G, et al. 2012. Discovery of novel dsRNA viral sequences by in silico cloning and implications for viral diversity, host range and evolution. PLoS One 7: e42147. https://doi.org/10.1371/journal.pone.0042147
- Nibert ML, Pyle JD, Firth AE. 2016. A +1 ribosomal frameshifting motif prevalent among plant amalgaviruses. Virology 498: 201-208. https://doi.org/10.1016/j.virol.2016.07.002
- Park D, Hahn Y. 2017. Genome sequence of spinach cryptic virus 1, a new member of the genus Alphapartitivirus (family Partitiviridae), was identified in spinach. J. Microbiol. Biotechnol. [In Press].
- Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, et al. 2012. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J. Comput. Biol. 19: 455-477. https://doi.org/10.1089/cmb.2012.0021
- Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ. 1997. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25: 3389-3402. https://doi.org/10.1093/nar/25.17.3389
- Li H, Durbin R. 2009. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25: 1754-1760. https://doi.org/10.1093/bioinformatics/btp324
- Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, et al. 2009. The sequence alignment/map format and SAMtools. Bioinformatics 25: 2078-2079. https://doi.org/10.1093/bioinformatics/btp352
- Robinson JT, Thorvaldsdottir H, Winckler W, Guttman M, Lander ES, Getz G, Mesirov JP. 2011. Integrative genomics viewer. Nat. Biotechnol. 29: 24-26. https://doi.org/10.1038/nbt.1754
- Edgar RC. 2004. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 32: 1792-1797. https://doi.org/10.1093/nar/gkh340
- Kumar S, Stecher G, Tamura K. 2016. MEGA7: Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 33: 1870-1874. https://doi.org/10.1093/molbev/msw054
- McGuffin LJ, Bryson K, Jones DT. 2000. The PSIPRED protein structure prediction server. Bioinformatics 16: 404-405. https://doi.org/10.1093/bioinformatics/16.4.404
- Crooks GE, Hon G, Chandonia JM, Brenner SE. 2004. WebLogo: a sequence logo generator. Genome Res. 14: 1188-1190. https://doi.org/10.1101/gr.849004
- Schneider TD, Stephens RM. 1990. Sequence logos: a new way to display consensus sequences. Nucleic Acids Res. 18: 6097-6100. https://doi.org/10.1093/nar/18.20.6097
- Elbeaino T, Kubaa RA, Digiaro M, Minafra A, Martelli GP. 2011. The complete nucleotide sequence and genome organization of Fig cryptic virus, a novel bipartite dsRNA virus infecting fig, widely distributed in the Mediterranean basin. Virus Genes 42: 415-421. https://doi.org/10.1007/s11262-011-0581-0
- Bruenn J. 1993. A closely related group of RNA-dependent RNA polymerases from double-stranded RNA viruses. Nucleic Acids Res. 21: 5667-5669. https://doi.org/10.1093/nar/21.24.5667
- Nibert ML, Ghabrial SA, Maiss E, Lesker T, Vainio EJ, Jiang D, Suzuki N. 2014. Taxonomic reorganization of family Partitiviridae and other recent progress in partitivirus research. Virus Res. 188: 128-141. https://doi.org/10.1016/j.virusres.2014.04.007
- Crawford LJ, Osman TA, Booy FP, Coutts RH, Brasier CM, Buck KW. 2006. Molecular characterization of a partitivirus from Ophiostoma himal-ulmi. Virus Genes 33: 33-39. https://doi.org/10.1007/s11262-005-0028-6
- Magallon S, Castillo A. 2009. Angiosperm diversification through time. Am. J. Bot. 96: 349-365. https://doi.org/10.3732/ajb.0800060
- Blawid R, Stephan D, Maiss E. 2007. Molecular characterization and detection of Vicia cryptic virus in different Vicia faba cultivars. Arch. Virol. 152: 1477-1488. https://doi.org/10.1007/s00705-007-0966-5
- Sabanadzovic S, Abou Ghanem-Sabanadzovic N, Valverde RA. 2010. A novel monopartite dsRNA virus from rhododendron. Arch. Virol. 155: 1859-1863. https://doi.org/10.1007/s00705-010-0770-5
- Firth AE, Jagger BW, Wise HM, Nelson CC, Parsawar K, Wills NM, et al. 2012. Ribosomal frameshifting used in influenza A virus expression occurs within the sequence UCC_UUU_CGU and is in the +1 direction. Open Biol. 2: 120109.
- Depierreux D, Vong M, Nibert ML. 2016. Nucleotide sequence of Zygosaccharomyces bailii virus Z: evidence for +1 programmed ribosomal frameshifting and for assignment to family Amalgaviridae. Virus Res. 217: 115-124. https://doi.org/10.1016/j.virusres.2016.02.008
- Ge X, Scott SW, Zimmerman MT. 1997. The complete sequence of the genomic RNAs of spinach latent virus. Arch. Virol. 142: 1213-1226. https://doi.org/10.1007/s007050050153
- Scott SW, Zimmerman MT, Ge X. 2003. Viruses in subgroup 2 of the genus Ilarvirus share both serological relationships and characteristics at the molecular level. Arch. Virol. 148: 2063-2075. https://doi.org/10.1007/s00705-003-0148-z
- Li W, Adkins S, Hilf ME. 2008. Characterization of complete sequences of RNA 1 and RNA 2 of Citrus variegation virus. Arch. Virol. 153: 385-388. https://doi.org/10.1007/s00705-007-1090-2
Cited by
- Identification of Two Novel Amalgaviruses in the Common Eelgrass (Zostera marina) and in Silico Analysis of the Amalgavirus +1 Programmed Ribosomal Frameshifting Sites vol.34, pp.2, 2017, https://doi.org/10.5423/ppj.nt.11.2017.0243
- Identification of a novel plant RNA virus species of the genus Amalgavirus in the family Amalgaviridae from chia (Salvia hispanica) vol.41, pp.5, 2017, https://doi.org/10.1007/s13258-019-00782-1