Browse > Article
http://dx.doi.org/10.4014/jmb.1703.03043

Genome Sequences of Spinach Deltapartitivirus 1, Spinach Amalgavirus 1, and Spinach Latent Virus Identified in Spinach Transcriptome  

Park, Dongbin (Department of Life Science, Research Center for Biomolecules and Biosystems, Chung-Ang University)
Hahn, Yoonsoo (Department of Life Science, Research Center for Biomolecules and Biosystems, Chung-Ang University)
Publication Information
Journal of Microbiology and Biotechnology / v.27, no.7, 2017 , pp. 1324-1330 More about this Journal
Abstract
Complete genome sequences of three new plant RNA viruses, Spinach deltapartitivirus 1 (SpDPV1), Spinach amalgavirus 1 (SpAV1), and Spinach latent virus (SpLV), were identified from a spinach (Spinacia oleracea) transcriptome dataset. The RNA-dependent RNA polymerases (RdRps) of SpDPV1, SpAV1, and SpLV showed 72%, 53%, and 93% amino acid sequence identities with the homologous RdRp of the most closely related virus, respectively, suggesting that SpDPV1 and SpAV1 were novel viruses. Sequence similarity and phylogenetic analyses revealed that SpDPV1 belonged to the genus Deltapartitivirus of the family Partitiviridae, SpAV1 to the genus Amalgavirus of the family Amalgaviridae, and SpLV to the genus Ilarvirus of the family Bromoviridae. Based on the demarcation criteria, SpDPV1 and SpAV1 are considered as novel species of the genera Deltapartitivirus and Amalgavirus, respectively. This is the first report of these two viruses from spinach.
Keywords
Spinach deltapartitivirus 1; Spinach amalgavirus 1; Spinach latent virus; spinach; transcriptome;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Crooks GE, Hon G, Chandonia JM, Brenner SE. 2004. WebLogo: a sequence logo generator. Genome Res. 14: 1188-1190.   DOI
2 Schneider TD, Stephens RM. 1990. Sequence logos: a new way to display consensus sequences. Nucleic Acids Res. 18: 6097-6100.   DOI
3 Elbeaino T, Kubaa RA, Digiaro M, Minafra A, Martelli GP. 2011. The complete nucleotide sequence and genome organization of Fig cryptic virus, a novel bipartite dsRNA virus infecting fig, widely distributed in the Mediterranean basin. Virus Genes 42: 415-421.   DOI
4 Nibert ML, Ghabrial SA, Maiss E, Lesker T, Vainio EJ, Jiang D, Suzuki N. 2014. Taxonomic reorganization of family Partitiviridae and other recent progress in partitivirus research. Virus Res. 188: 128-141.   DOI
5 Crawford LJ, Osman TA, Booy FP, Coutts RH, Brasier CM, Buck KW. 2006. Molecular characterization of a partitivirus from Ophiostoma himal-ulmi. Virus Genes 33: 33-39.   DOI
6 Magallon S, Castillo A. 2009. Angiosperm diversification through time. Am. J. Bot. 96: 349-365.   DOI
7 Blawid R, Stephan D, Maiss E. 2007. Molecular characterization and detection of Vicia cryptic virus in different Vicia faba cultivars. Arch. Virol. 152: 1477-1488.   DOI
8 Depierreux D, Vong M, Nibert ML. 2016. Nucleotide sequence of Zygosaccharomyces bailii virus Z: evidence for +1 programmed ribosomal frameshifting and for assignment to family Amalgaviridae. Virus Res. 217: 115-124.   DOI
9 Sabanadzovic S, Abou Ghanem-Sabanadzovic N, Valverde RA. 2010. A novel monopartite dsRNA virus from rhododendron. Arch. Virol. 155: 1859-1863.   DOI
10 Firth AE, Jagger BW, Wise HM, Nelson CC, Parsawar K, Wills NM, et al. 2012. Ribosomal frameshifting used in influenza A virus expression occurs within the sequence UCC_UUU_CGU and is in the +1 direction. Open Biol. 2: 120109.
11 Ge X, Scott SW, Zimmerman MT. 1997. The complete sequence of the genomic RNAs of spinach latent virus. Arch. Virol. 142: 1213-1226.   DOI
12 Scott SW, Zimmerman MT, Ge X. 2003. Viruses in subgroup 2 of the genus Ilarvirus share both serological relationships and characteristics at the molecular level. Arch. Virol. 148: 2063-2075.   DOI
13 Bruenn J. 1993. A closely related group of RNA-dependent RNA polymerases from double-stranded RNA viruses. Nucleic Acids Res. 21: 5667-5669.   DOI
14 Shi A, Mou B. 2016. Genetic diversity and association analysis of leafminer (Liriomyza langei) resistance in spinach (Spinacia oleracea). Genome 59: 581-588.   DOI
15 Kumar S, Stecher G, Tamura K. 2016. MEGA7: Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 33: 1870-1874.   DOI
16 McGuffin LJ, Bryson K, Jones DT. 2000. The PSIPRED protein structure prediction server. Bioinformatics 16: 404-405.   DOI
17 Irish BM, Correll JC, Feng C, Bentley T, de Los Reyes BG. 2008. Characterization of a resistance locus (Pfs-1) to the spinach downy mildew pathogen (Peronospora farinosa f. sp. spinaciae) and development of a molecular marker linked to Pfs-1. Phytopathology 98: 894-900.   DOI
18 Takahata S, Yago T, Iwabuchi K, Hirakawa H, Suzuki Y, Onodera Y. 2016. Comparison of spinach sex chromosomes with sugar beet autosomes reveals extensive synteny and low recombination at the male-determining locus. J. Hered. 107: 679-685.   DOI
19 Xu C, Jiao C, Zheng Y, Sun H, Liu W, Cai X, et al. 2015. De novo and comparative transcriptome analysis of cultivated and wild spinach. Sci. Rep. 5: 17706.
20 Yan J, Yu L, Xuan J, Lu Y, Lu S, Zhu W. 2016. De novo transcriptome sequencing and gene expression profiling of spinach (Spinacia oleracea L.) leaves under heat stress. Sci. Rep. 6: 19473.   DOI
21 Scholthof KB, Adkins S, Czosnek H, Palukaitis P, Jacquot E, Hohn T, et al. 2011. Top 10 plant viruses in molecular plant pathology. Mol. Plant Pathol. 12: 938-954.   DOI
22 Roossinck MJ. 2010. Lifestyles of plant viruses. Philos. Trans. R. Soc. Lond. B Biol. Sci. 365: 1899-1905.   DOI
23 Nibert ML, Pyle JD, Firth AE. 2016. A +1 ribosomal frameshifting motif prevalent among plant amalgaviruses. Virology 498: 201-208.   DOI
24 Li W, Adkins S, Hilf ME. 2008. Characterization of complete sequences of RNA 1 and RNA 2 of Citrus variegation virus. Arch. Virol. 153: 385-388.   DOI
25 Mihara T, Nishimura Y, Shimizu Y, Nishiyama H, Yoshikawa G, Uehara H, et al. 2016. Linking virus genomes with host taxonomy. Viruses 8: 66.   DOI
26 Elbeaino T, Kubaa RA, Tuzlali HT, Digiaro M. 2016. Pittosporum cryptic virus 1: genome sequence completion using next-generation sequencing. Arch. Virol. 161: 2039-2042.   DOI
27 Kim DS, Jung JY, Wang Y, Oh HJ, Choi D, Jeon CO, et al. 2014. Plant RNA virus sequences identified in kimchi by microbial metatranscriptome analysis. J. Microbiol. Biotechnol. 24: 979-986.   DOI
28 Liu H, Fu Y, Xie J, Cheng J, Ghabrial SA, Li G, et al. 2012. Discovery of novel dsRNA viral sequences by in silico cloning and implications for viral diversity, host range and evolution. PLoS One 7: e42147.   DOI
29 Park D, Hahn Y. 2017. Genome sequence of spinach cryptic virus 1, a new member of the genus Alphapartitivirus (family Partitiviridae), was identified in spinach. J. Microbiol. Biotechnol. [In Press].
30 Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, et al. 2012. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J. Comput. Biol. 19: 455-477.   DOI
31 Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ. 1997. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25: 3389-3402.   DOI
32 Edgar RC. 2004. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 32: 1792-1797.   DOI
33 Li H, Durbin R. 2009. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25: 1754-1760.   DOI
34 Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, et al. 2009. The sequence alignment/map format and SAMtools. Bioinformatics 25: 2078-2079.   DOI
35 Robinson JT, Thorvaldsdottir H, Winckler W, Guttman M, Lander ES, Getz G, Mesirov JP. 2011. Integrative genomics viewer. Nat. Biotechnol. 29: 24-26.   DOI