DOI QR코드

DOI QR Code

Enhanced Photocatalytic Properties of Visible Light Responsive La/TiO2-Graphene Composites for the Removal of Rhodamin B in Water

  • Areerob, Yonrapach (Department of Advanced Materials Science & Engineering, Hanseo University) ;
  • Oh, Won-Chun (Department of Advanced Materials Science & Engineering, Hanseo University)
  • Received : 2017.03.25
  • Accepted : 2017.05.15
  • Published : 2017.08.20

Abstract

$La/TiO_2$ - graphene composites were synthesized in this study, and applied to the photocatalytic degradation of Rhodamine B (RhB) under UV-visible light irradiation. X-ray diffraction (XRD), surface analysis, X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM), and Transmission electron microscopy (TEM) analysis demonstrated that $La/TiO_2$ nanoparticles were well distributed on the surface of graphene, and formed the heterostructure of $La/TiO_2$-graphene. Compared to the pure $TiO_2$, $La/TiO_2$-graphene composites displayed much higher photocatalytic activities in RhB degradation under UV-visible light irradiation. The photocatalytic data of $La/TiO_2$-graphene composites exhibit extended light absorption in the visible light region, and possess better charge separation capability than that of pure $TiO_2$. The high photocatalytic activity was attributed to the composite's high adsorptivity, extended light absorption, and increased charge separation efficiency, due to the excellent electrical properties of graphene, and the large surface contact between graphene and $La/TiO_2$ nanoparticles.

Keywords

References

  1. Robinson, T.; McMullan, G.; Marchant, R.; Nigam, P. Bioresour. Technol. 2001, 77, 247. https://doi.org/10.1016/S0960-8524(00)00080-8
  2. Kobylewski, S.; Jacobson, M. F. Food Dyes: A Rainbow of Risks; Center for Science in The Public Interest: Washington, DC, 2010.
  3. OECD, Emission Scenario Document on Textile Finishing Industry Europe, OECD, Paris, 2004, 77.
  4. Leary, R.; Westwood, A. Carbon. 2011, 49, 741. https://doi.org/10.1016/j.carbon.2010.10.010
  5. Lavanyaa, T.; Duttab, M.; Ramaprabhua, S.; Satheeshc, K. J. Environ. Chem. Eng. 2017, 5, 494. https://doi.org/10.1016/j.jece.2016.12.025
  6. Yadav, H. M.; Kim, J. S. J. Alloys Compd. 2016, 688, 123. https://doi.org/10.1016/j.jallcom.2016.07.133
  7. Meng, F.; Hong, Z.; Arndt, J., Li, M.; Zhi, Mi.; Yang, F.; Wu, N. Nano Res. 2012, 5, 213. https://doi.org/10.1007/s12274-012-0201-x
  8. Wang, J.; Tafen, D. N., Lewis, J.P.; Hong, Z.; Manivannan A.; Zhi, M.; Li, M.; Wu, N. J. Am. Chem. Soc. 2009, 131, 12290. https://doi.org/10.1021/ja903781h
  9. Minella, M.; Sordello F.; Minero, C. Catal. Today. 2017, 281, 29. https://doi.org/10.1016/j.cattod.2016.03.040
  10. Liu, L.; Luo, C.; Xiong, J.; Yang, Z.; Zhang, Y.; Cai, Y.; Gu, H. J. Alloys Compd, 2017, 690, 771. https://doi.org/10.1016/j.jallcom.2016.08.197
  11. Ilyas, A. M.; Gondal, M. A.; Baig, Umair.; Akhtar, S.; Yamani, Z. H. Sol. Energy. 2016, 137, 246. https://doi.org/10.1016/j.solener.2016.08.019
  12. Zargari, S.; Rahimi, R.; Ghaffarinejad, A.; Morsali, A. J. Colloid Interface Sci. 2016, 466, 310. https://doi.org/10.1016/j.jcis.2015.12.046
  13. Yang, Y.; Li, Y.; Wang, J.; Wu, J.; He, D.; Qier, A. J. Alloys Compd. 2017, 699, 47. https://doi.org/10.1016/j.jallcom.2016.12.204
  14. Laia, C.; Wanga, M. M.; Zenga, G. M.; Liua, Y. G. Appl. Surf. Sci. 2016, 390, 368. https://doi.org/10.1016/j.apsusc.2016.08.119
  15. Wang, M.; Cai, L.; Jin, Q. Sep. Purif. Technol. 2017, 172, 217. https://doi.org/10.1016/j.seppur.2016.08.015
  16. Ghasemia, S.; Hashemian, S. J.; Alamolhoda, A. A.; Gocheva, I.; Setayesh, S. R. Mater. Res. Bull. 2017, 87, 40. https://doi.org/10.1016/j.materresbull.2016.11.020
  17. Bera, S.; Pal, M.; Naskar, A.; Jana, S. J. Alloys Compd. 2016, 669, 177. https://doi.org/10.1016/j.jallcom.2016.02.007
  18. Tan L. L.; Ong, W. J., Chai, S. P.; Mohamed, A. R. Chem. Eng. J. 2017, 308, 248. https://doi.org/10.1016/j.cej.2016.09.050
  19. Sima, L. C., Leong, K. H.; Saravanan, P.; Ibrahim, S. Appl. Surf. Sci. 2016, 358, 122.
  20. Lin, L.; Wang, H.; Xu, P. Chem. Eng. J. 2017, 310, 389. https://doi.org/10.1016/j.cej.2016.04.024
  21. Cao, S.; Liu, T.; Tsang, Y.; Chena, C. Appl. Surf. Sci. 2016, 382, 225. https://doi.org/10.1016/j.apsusc.2016.04.138
  22. Saleem, H.; Habib, J. Alloys Compd. 2016, 679, 177. https://doi.org/10.1016/j.jallcom.2016.03.240
  23. Qin, L.; Liang, S.; Tan, X.; Pan, A. J. Alloys Compd. 2017, 692, 124. https://doi.org/10.1016/j.jallcom.2016.09.015
  24. Raza, W.; Haque, M. M.; Muneer, M.; Fleisch, M.; Hakki, A.; Bahnemann, D. J. Alloys Compd. 2015, 632, 837. https://doi.org/10.1016/j.jallcom.2015.01.222
  25. Luan, X.; Chen, L.; Zhang, J.; Qu, G.; Flake, J. C.; Wang, Y. Electrochim. Acta. 2013, 111, 216. https://doi.org/10.1016/j.electacta.2013.08.016
  26. Zhang, J. J.; Liu, X.; Ye, T.; Zheng, G. P.; Zheng, X.; Liu, P.; Guan, X. X. J. Alloys Compd. 2017, 698, 819. https://doi.org/10.1016/j.jallcom.2016.12.279
  27. Xie, Y.; Song, J.; Zhou, P.; Ling, Y.; Wu, Y. Electrochim. Acta. 2016, 210, 358. https://doi.org/10.1016/j.electacta.2016.05.157
  28. Zhang, Y.; Hou, X.; Sun, T.; Zhao, X. Ceram. Int. 2017, 43, 1150. https://doi.org/10.1016/j.ceramint.2016.10.056
  29. Xu, W.; Xie, W.; Huang, X.; Chen, X.; Huang, N.; Wang, X.; Liu, J. Food Chem. 2017, 221, 267. https://doi.org/10.1016/j.foodchem.2016.10.054
  30. Khannam, M.; Boruah, R.; Doluia S. K. J. Photochem. Photobiol. A Chemistry. 2017, 335, 248. https://doi.org/10.1016/j.jphotochem.2016.12.006
  31. Yan, W. Y.; Zhou, Q.; Chena, X.; Yang, Y.; Zhang, Y.; Huang, X. J.; Wu, Y. C. J. Hazard. Mater. 2016, 314, 41. https://doi.org/10.1016/j.jhazmat.2016.04.026
  32. Yang, W. D.; Li, Y. R.; Lee, Y. C. Appl. Surf. Sci. 2016, 380, 249. https://doi.org/10.1016/j.apsusc.2016.01.118
  33. Kim, J. H.; Choi, W.; Jung, H. G.; Oh, S. H.; Chung, K. Y. J. Alloys Compd. 2017, 690, 390. https://doi.org/10.1016/j.jallcom.2016.08.140
  34. Li, X.; Zhao, Y.; Wang, X.; Wang, J.; Gaskov A. M.; Akbar, S. A. Sens. Actuators B. 2016, 230, 330. https://doi.org/10.1016/j.snb.2016.02.069
  35. Li, X.; Zhang, X.; Wang, R.; Su, Z.; Sha, J.; Liu, P. J. Power Sources. 2016, 336, 298. https://doi.org/10.1016/j.jpowsour.2016.10.085
  36. Qu, A.; Xie, H.; Xu, Xi.; Zhang, Y.; Wen, S.; Cui, Y. Appl. Surf. Sci. 2016, 375, 230. https://doi.org/10.1016/j.apsusc.2016.03.077
  37. Zhang, J.; Liu, X.; Ye, T.; Zheng, G.; Zheng, X. C.; Liu, P.; Guan, X. X. J. Alloys Compd. 2017, 698, 819. https://doi.org/10.1016/j.jallcom.2016.12.279
  38. Chen, J.; Shu, J.; Anqi, Z.; Juyuan, H.; Yan, Z.; Chen, J. Diamond Relat. Mater. 2016, 70, 137. https://doi.org/10.1016/j.diamond.2016.10.023
  39. Aparicio, J. R.; Samaniego, J. E.; Ramirez, B. R. Sol. Energy. 2016, 139, 258. https://doi.org/10.1016/j.solener.2016.09.050
  40. Biris, A. R.; Toloman, D.; Popa, A.; Lazar, M. D. Physica E. 2016, 81, 326. https://doi.org/10.1016/j.physe.2016.03.028
  41. Zhang, W.; Xiao, X.; Zeng, X.; Li, Y.; Zheng, L.; Wan, C. J. Alloys Compd. 2017, 685, 774.
  42. Rauf, M. A.; Salman, S. Chem. Eng. J. 2009, 151, 10. https://doi.org/10.1016/j.cej.2009.02.026
  43. Prabhakarrao, N.; M. Chandra, R.; Rao, T. S. J. Alloys Compd. 2017, 694, 596. https://doi.org/10.1016/j.jallcom.2016.09.329
  44. Wang, W.; Yu, J.; Xiang, Q.; Bei, C. Appl. Catal., B. 2012, 119, 109.
  45. Yang, L.; Li, Z.; Jiang, H.; Jiang, W.; Su, R.; Luo, S.; Luo Y. Appl. Catal., B. 2016, 183, 75. https://doi.org/10.1016/j.apcatb.2015.10.023
  46. Zhou, Y.; Wu, Y.; Li, Y.; Liu, Y.; Yang, L. Ceram. Int. 2016, 42, 12482. https://doi.org/10.1016/j.ceramint.2016.05.033
  47. Ghasemia, S.; Esfandiar, A.; Setayesh, S. R.; Yangjehc, A. H. A.; zad, I.; Gholamia, M. R. Appl. Catal., A. 2013, 462, 82.

Cited by

  1. /graphene interface for enhanced adsorption and photocatalytic degradation of multiple organics vol.29, pp.39, 2018, https://doi.org/10.1088/1361-6528/aacc56