DOI QR코드

DOI QR Code

철근 콘크리트 충전 PHC말뚝의 휨 설계 및 성능 평가

Flexural Design and Experiments on Reinforced Concrete Filled PHC Pile

  • 김정회 (아이에스동서(주) 기술연구소) ;
  • 정해광 ((주)대오이엔씨) ;
  • 박영식 (아이에스동서(주) 기술연구소) ;
  • 민창식 (동국대학교 건설환경공학과)
  • 투고 : 2016.12.06
  • 심사 : 2017.06.15
  • 발행 : 2017.08.31

초록

PHC말뚝을 보강한 CFP말뚝의 P-M 상관도를 통한 휨 모멘트 예측과 휨 실험 결과를 통해 P-M 계산법의 타당성과 CFP말뚝의 휨 성능을 평가한 실험 연구이다. 시험체는 PHC말뚝과 링형 합성 전단연결재 그리고 속채움 콘크리트를 기본으로 한 CFP말뚝과 1차 보강(말뚝 보강철근 H13-8ea), 2차 보강(내부 보강철근 H19-8ea)으로 제작된 시험체의 휨 실험 결과 CFP-N-N 시험체 대비 최고 하중이 46.4%, 103.9% 증대되었으며, 보강 철근량에 따른 연성능력 증대가 이루어졌다. 또한 CFP말뚝 설계법의 극한한계상태 예측값과 실험 결과값을 비교해 볼 때, 각 보강 단계별 1.23, 1.40배의 안전율을 확보하여 본 연구에서 제시한 설계법이 합리적인 것으로 판단된다.

The objective of this study is theoretical and empirical evaluation of the flexural performance of concrete filled pretensioned spun high strength concrete pile with ring type composite shear connectors (CFP pile). The specimens are comprised of standard CFP pile, PHC pile+composite shear connector+filed concrete (CFP-N-N), standard CFP pile with $1^{st}$ reinforcements (H13-8ea), and standard CFP pile with $1^{st}$ and $2^{nd}$ reinforcements(H19-8ea). Flexural performance evaluation results showed that the ductility is improved with increased steel ratio, which leads to the increased maximum load by 46.4% (with $1^{st}$ reinforcement) and 103.9% (with $1^{st}$ and $2^{nd}$ reinforcements) compared to standard CFP ( CFP-N-N). Comparing with the predicted ultimate limit state values of the CFP pile design method and the experimental results, the design method presented in this study is reasonable since safety factor of 1.23 and 1.40 times for each reinforcement step are secured.

키워드

참고문헌

  1. Ryu, C., "Recent Method and Status for the Production of Spun-Concrete Products", Magazine of The Korean Concrete Institute, Vol. 8, No. 1 , 1996, pp. 29-25.
  2. Jeong, Y., "Pretensioned Spun High Strength Concrete Piles", Magazine of The Korean Concrete Institute, Vol. 6, No. 6, 1994, pp. 35-41.
  3. Jaung, J. D. and Kim, W. K., "Present Status of Concrete Product in Korea", Magazine of The Korean Concrete Institute, Vol. 8, No. 1, 1996, pp. 7-5.
  4. Lee, S. L., Gang, S. S., and Yoo, S. W., "Experimental Study on Segregated Layers of Material and Compressive Strength of Concrete for Pretensioned Spun High Strength Concrete Pile", Journal of the Korea Concrete Institute, Vol. 13, No. 1, 2001, pp. 16-22. https://doi.org/10.22636/JKCI.2001.13.1.16
  5. Choi, S. S., "A Suggestion of High Quality Concrete for PHC Pile", Magazine of the Korea Concrete Institute, Vol. 14, No. 6, 2002, pp. 41-48. https://doi.org/10.4334/JKCI.2002.14.1.041
  6. Byun, G. J., "'Durability of PHC Piles and Characteristics of High Strength Concrete", 2004 KSCE Symposium on Design of PHC Pile and Construction, Korean Society of Civil Engineers, Seoul, Korea, 2004, pp. 1-25.
  7. Kim, I. T., Kim, S. R., and Kim, M. M., "A Study on the Applicability of High-Performance Piles on Railway Bridges", Proceedings of 2012 The Korean Society for Railway, The Korean Society for Railway, Gyeongju, Korea, 2012. pp. 165-171.
  8. Park, T. K., Lee, J. C., and Lee, C. S., "Problem and Improvement Measure of PHC Pile Construction", Proceedings of the Korean Institute of Construction Engineering and Management, Korean Institute of Construction Engineering and Management, 2008, pp. 344-348.
  9. Min, C. S., Reinforced Concrete Design, Koomibook, Seoul, 2008, pp. 625-627.
  10. KS F 4306, Pretensioned Spun Hight Strength Concrete Piles, Korean agency for Technology and Standard, Seoul, 2004, pp. 1-55.