• Title/Summary/Keyword: CFP말뚝

Search Result 3, Processing Time 0.017 seconds

Flexural Design and Experiments on Reinforced Concrete Filled PHC Pile (철근 콘크리트 충전 PHC말뚝의 휨 설계 및 성능 평가)

  • Kim, Jeong-Hoi;Jung, Hae-Kwang;Park, Young-Shik;Min, Chang-Shik
    • Journal of the Korea Concrete Institute
    • /
    • v.29 no.4
    • /
    • pp.353-360
    • /
    • 2017
  • The objective of this study is theoretical and empirical evaluation of the flexural performance of concrete filled pretensioned spun high strength concrete pile with ring type composite shear connectors (CFP pile). The specimens are comprised of standard CFP pile, PHC pile+composite shear connector+filed concrete (CFP-N-N), standard CFP pile with $1^{st}$ reinforcements (H13-8ea), and standard CFP pile with $1^{st}$ and $2^{nd}$ reinforcements(H19-8ea). Flexural performance evaluation results showed that the ductility is improved with increased steel ratio, which leads to the increased maximum load by 46.4% (with $1^{st}$ reinforcement) and 103.9% (with $1^{st}$ and $2^{nd}$ reinforcements) compared to standard CFP ( CFP-N-N). Comparing with the predicted ultimate limit state values of the CFP pile design method and the experimental results, the design method presented in this study is reasonable since safety factor of 1.23 and 1.40 times for each reinforcement step are secured.

Shear Experiments on Concrete Filled PHC Pile with Composite Shear Connectors with Rebar Holes (보강 철근 정착 홀을 갖는 합성 전단연결재를 적용한 콘크리트 충전 PHC말뚝의 전단성능 평가)

  • Kim, Jeong-Hoi;Park, Young-Shik;Min, Chang-Shik
    • Journal of the Korea Concrete Institute
    • /
    • v.29 no.3
    • /
    • pp.259-266
    • /
    • 2017
  • The purpose of this study was to contribute to the field application cost effectively and reasonably by developing the functional piles that reinforces shear force. CFP pile (Concrete Filled Pretensioned Spun High Strength Concrete Pile with Ring type Composite shear connectors) developed in this study increases the shear stress by placing composite shear connector and filling the concrete into hollow part of the pile. By placing the reinforcement (H13-8ea) and the reinforcement (H19-8ea) into hollow section inside of PHC piles, it also improves the shear strength due to increasing steel ratio. It reinforces shear strength effectively by dowel force that is generated by putting reinforcement (H13-8) into the holes of composite shear connectors for the composite behavior of filled concrete and PHC pile. The study was reviewed and compared the calculated result of the shear strength by limit state design method highway bridge design standards (2012) and experiment result of the shear strength by KS F 4306. We can design the shear strength reasonably as the safety ratio of 2.20, 2.15, 2.05 is shown comparing to design shear strength, according to design shear strength on each cross sections and the experiment results of the CFP pile.

Finite Element Analysis on Reinforced Concrete Filled PHC Pile with Ring Type Composite Shear Connectors (링형 합성 전단연결재를 적용한 철근 콘크리트 충전 PHC말뚝의 유한요소해석)

  • Kim, Jeong-Hoi;Lee, Doo-Sung;Park, Young-Shik;Min, Chang-Shik
    • Journal of the Korea Concrete Institute
    • /
    • v.29 no.3
    • /
    • pp.249-257
    • /
    • 2017
  • The purpose of this study was to contribute to the field application cost effectively and reasonably by developing the functional piles that make up for the defects of PHC piles. CFP (Concrete Filled Pretensioned Spun High Strength Concrete Pile with Ring type Composite shear connectors) piles developed in this study increases the compressive stress through enlarged cross section by rearranging composite shear connectors and filling the hollow part of PHC pile with concrete. And it improved shear and bending performance placing the rebar (H13-8ea) within the PHC pile and the hollow part of PHC pile of rebar (H19-8ea). In addition, the composite shear connectors were placed for the composite behavior between PHC pile and filled concrete. Placing Rebars (H13-8ea) of PHC pile into composite shear connector holes are sleeve-type mechanical coupling method that filling the concrete to the gap of the two members. Nonlinear finite element analyzes were performed to verify the performance of shear and bending moments and it deduced the spacing of the composite shear connectors. Through a various interpretation of CFP piles, it's proved that the CFP pile can increase the shear and bending stiffness of the PHC pile effectively. Therefore, this can be utilized usefully on the construction sites.