Abstract
A hot forming process is required for Mg alloys to enhance the formability and plastic workability due to the insufficient formability at room temperature. Mg alloy undergoes dynamic recrystallization (DRX) during the hot working process, which is a restoration or softening mechanism that reduces the dislocation density and releases the accumulated energy to facilitate plastic deformation. The flow stress curve shows three stages of complicated strain hardening and softening phenomena. As the strain increases, the stress also increases due to work hardening, and it abruptly decreases work softening by dynamic recrystallization. It then maintains a steady-state region due to the equilibrium between the work hardening and softening. In this paper, an efficient optimization process is proposed for the material model of the dynamic recrystallization to improve the accuracy of the flow curve. A total of 18 variables of the constitutive equation of AZ80 alloy were systematically optimized at an elevated forming temperature($300^{\circ}C$) with various strain rates(0.001, 0.1, 1, 10/sec). The proposed method was validated by applying it to the constitutive equation of AZ61 alloy.
상용 마그네슘 합금의 경우, 상온에서 낮은 성형성을 갖기 때문에, 온간 성형 조건 하에서 성형 공정을 수행하는 것이 일반적이다. 마그네슘 합금은 온간 성형 과정 중에 동적 재결정(dynamic recrystallization, DRX)이 발생하여, 초기 결정립 사이즈가 급격하게 작아지며, 내부 전위 밀도가 낮아지게 된다. 이에 따라, 유동 응력 곡선은 세 단계의 복잡한 변형 경화 및 연화 현상을 보이게 된다. 첫 번째 구간에서는 변형률이 증가함에 따라, 가공 경화에 의해 응력이 증가하는 경향을 보이며, 두 번째 구간에서는 동적 재결정 현상에 의한 가공 연화로 응력이 갑작스럽게 감소한다. 세 번째 구간에서는 가공 경화와 가공 연화 사이의 평형에 의해, 응력이 일정하게 나타난다. 본 연구에서는, 성형 온도 $300^{\circ}C$, 변형률 속도는 0.001, 0.1, 1, 10/sec에서 AZ80 합금의 구성 방정식의 18개 변수들을 체계적으로 최적화하며, 유동 곡선의 정확도를 높일 수 있는 방식에 대해 제안하려고 한다. 또한 AZ80외에 AZ61도 추가적으로 최적화여 본 논문에서 제안한 최적화 방식의 성능을 증명하였다.