DOI QR코드

DOI QR Code

Material model optimization for dynamic recrystallization of Mg alloy under elevated forming temperature

마그네슘 합금의 온간 동적재결정 구성방정식 최적화

  • Cho, Yooney (Department of Mechanical engineering, Hanyang University ERICA campus) ;
  • Yoon, Jonghun (Department of Mechanical engineering, Hanyang University ERICA campus)
  • 조윤희 (한양대학교 ERICA 캠퍼스 기계공학과) ;
  • 윤종헌 (한양대학교 ERICA 캠퍼스 기계공학과)
  • Received : 2017.02.21
  • Accepted : 2017.06.09
  • Published : 2017.06.30

Abstract

A hot forming process is required for Mg alloys to enhance the formability and plastic workability due to the insufficient formability at room temperature. Mg alloy undergoes dynamic recrystallization (DRX) during the hot working process, which is a restoration or softening mechanism that reduces the dislocation density and releases the accumulated energy to facilitate plastic deformation. The flow stress curve shows three stages of complicated strain hardening and softening phenomena. As the strain increases, the stress also increases due to work hardening, and it abruptly decreases work softening by dynamic recrystallization. It then maintains a steady-state region due to the equilibrium between the work hardening and softening. In this paper, an efficient optimization process is proposed for the material model of the dynamic recrystallization to improve the accuracy of the flow curve. A total of 18 variables of the constitutive equation of AZ80 alloy were systematically optimized at an elevated forming temperature($300^{\circ}C$) with various strain rates(0.001, 0.1, 1, 10/sec). The proposed method was validated by applying it to the constitutive equation of AZ61 alloy.

상용 마그네슘 합금의 경우, 상온에서 낮은 성형성을 갖기 때문에, 온간 성형 조건 하에서 성형 공정을 수행하는 것이 일반적이다. 마그네슘 합금은 온간 성형 과정 중에 동적 재결정(dynamic recrystallization, DRX)이 발생하여, 초기 결정립 사이즈가 급격하게 작아지며, 내부 전위 밀도가 낮아지게 된다. 이에 따라, 유동 응력 곡선은 세 단계의 복잡한 변형 경화 및 연화 현상을 보이게 된다. 첫 번째 구간에서는 변형률이 증가함에 따라, 가공 경화에 의해 응력이 증가하는 경향을 보이며, 두 번째 구간에서는 동적 재결정 현상에 의한 가공 연화로 응력이 갑작스럽게 감소한다. 세 번째 구간에서는 가공 경화와 가공 연화 사이의 평형에 의해, 응력이 일정하게 나타난다. 본 연구에서는, 성형 온도 $300^{\circ}C$, 변형률 속도는 0.001, 0.1, 1, 10/sec에서 AZ80 합금의 구성 방정식의 18개 변수들을 체계적으로 최적화하며, 유동 곡선의 정확도를 높일 수 있는 방식에 대해 제안하려고 한다. 또한 AZ80외에 AZ61도 추가적으로 최적화여 본 논문에서 제안한 최적화 방식의 성능을 증명하였다.

Keywords

References

  1. X.Y. Lou, M. Li, R.K. Boger, S.R. Agnew, R.H. Wagoner, Hardening evolution of AZ31B Mg sheet, International Journal of Plasticity, vol. 23, pp. 44-86, 2007. DOI: https://doi.org/10.1016/j.ijplas.2006.03.005
  2. Jonghun Yoon, Junghwan Lee, Effect of initial microstructure on Mg scroll forging under warm forming condition, Materials Transactions, vol. 55, no. 2, pp. 238-244, 2014. DOI: https://doi.org/10.2320/matertrans.M2013274
  3. Jonghun Yoon, Juseok Lee, Junghwan Lee, Enhancement of the microstructure and mechanical properties in as-forged Mg-8Al-0.5Zn alloy using T5 heat treatment, Materials Science & Engineering A, Vol. 586, pp. 306-312, 2013. DOI: https://doi.org/10.1016/j.msea.2013.08.031
  4. S. R. Agnew, O. Duygulu, 2005, Plastic anisotropy and the role of non-basal slip in magnesium alloy AZ31B, International Journal of Plasticity, vol. 21, pp. 1161-1193, 2005. DOI: https://doi.org/10.1016/j.ijplas.2004.05.018
  5. J.H. Yoon, O. Cazacu, R.K. Mishra, Constitutive modeling of AZ31 sheet alloy with application to axial crushing, Materials Science & Engineering A, vol. 565, 203-212, 2013. DOI: https://doi.org/10.1016/j.msea.2012.12.054
  6. T. Al-Samman, G. Gottstein, Dynamic recrystallization during high temperature deformation of magnesium, Materials Science & Engineering A, vol. 490, pp. 411-420, 2008. DOI: https://doi.org/10.1016/j.msea.2008.02.004
  7. Y. Qin, Q. Pan, Y. He, W. Li, X. Liu, X. Fan, Modeling of flow stress for magnesium alloy during hot deformation, Materials Science & Engineering A, vol. 527, pp. 2790-2797, 2010. DOI: https://doi.org/10.1016/j.msea.2010.01.035
  8. H. Takuda, H. Fujimoto, N. Hatta, Modeling on flow stress of Mg-Al-Zn alloys at elevated temperatures, Journal of Materials Processing Technology, vol. 80-81, pp. 513-516. 1998. DOI: https://doi.org/10.1016/S0924-0136(98)00154-X
  9. H. T. Zhou, X.Q. Zeng, Q. D. Wang, A flow stress model for AZ61 Magnesium alloy, Acta Metallurgica Sinica, vol. 17, no. 2, pp. 155-160, 2004.
  10. Z.Q. Sheng, R. Shivpuri, Modeling flow stress of magnesium alloys at elevated temperature, Materials Science & Engineering A, vol. 419, pp. 202-208, 2006. DOI: https://doi.org/10.1016/j.msea.2005.12.020
  11. B. K. Raghunath, K. Raghukandan, R. Karthikeyan, K. Palanikumar, U.T.S. Pillai, R. Ashok Gandhi, Flow stress modeling of AZ91 magnesium alloys at elevated temperature, Journal of Alloys and Compounds, vol. 509, pp. 4992-4998, 2011. DOI: https://doi.org/10.1016/j.jallcom.2011.01.182
  12. K. Ahn, H. Lee, J. Yoon, Material model for dynamic recrystallization of Mg-8Al-0.5Zn alloy under under uni-axial compressive deformation with variation of forming temperatures, Materials Science & Engineering A, vol. 651, pp. 1010-1017, 2016. DOI: https://doi.org/10.1016/j.msea.2015.11.055