Browse > Article
http://dx.doi.org/10.5762/KAIS.2017.18.6.263

Material model optimization for dynamic recrystallization of Mg alloy under elevated forming temperature  

Cho, Yooney (Department of Mechanical engineering, Hanyang University ERICA campus)
Yoon, Jonghun (Department of Mechanical engineering, Hanyang University ERICA campus)
Publication Information
Journal of the Korea Academia-Industrial cooperation Society / v.18, no.6, 2017 , pp. 263-268 More about this Journal
Abstract
A hot forming process is required for Mg alloys to enhance the formability and plastic workability due to the insufficient formability at room temperature. Mg alloy undergoes dynamic recrystallization (DRX) during the hot working process, which is a restoration or softening mechanism that reduces the dislocation density and releases the accumulated energy to facilitate plastic deformation. The flow stress curve shows three stages of complicated strain hardening and softening phenomena. As the strain increases, the stress also increases due to work hardening, and it abruptly decreases work softening by dynamic recrystallization. It then maintains a steady-state region due to the equilibrium between the work hardening and softening. In this paper, an efficient optimization process is proposed for the material model of the dynamic recrystallization to improve the accuracy of the flow curve. A total of 18 variables of the constitutive equation of AZ80 alloy were systematically optimized at an elevated forming temperature($300^{\circ}C$) with various strain rates(0.001, 0.1, 1, 10/sec). The proposed method was validated by applying it to the constitutive equation of AZ61 alloy.
Keywords
AZ80; AZ61; dynamic recrystallization; material model; optimization; thermo-mechanical flow curve;
Citations & Related Records
연도 인용수 순위
  • Reference
1 X.Y. Lou, M. Li, R.K. Boger, S.R. Agnew, R.H. Wagoner, Hardening evolution of AZ31B Mg sheet, International Journal of Plasticity, vol. 23, pp. 44-86, 2007. DOI: https://doi.org/10.1016/j.ijplas.2006.03.005   DOI
2 Jonghun Yoon, Junghwan Lee, Effect of initial microstructure on Mg scroll forging under warm forming condition, Materials Transactions, vol. 55, no. 2, pp. 238-244, 2014. DOI: https://doi.org/10.2320/matertrans.M2013274   DOI
3 Jonghun Yoon, Juseok Lee, Junghwan Lee, Enhancement of the microstructure and mechanical properties in as-forged Mg-8Al-0.5Zn alloy using T5 heat treatment, Materials Science & Engineering A, Vol. 586, pp. 306-312, 2013. DOI: https://doi.org/10.1016/j.msea.2013.08.031   DOI
4 S. R. Agnew, O. Duygulu, 2005, Plastic anisotropy and the role of non-basal slip in magnesium alloy AZ31B, International Journal of Plasticity, vol. 21, pp. 1161-1193, 2005. DOI: https://doi.org/10.1016/j.ijplas.2004.05.018   DOI
5 J.H. Yoon, O. Cazacu, R.K. Mishra, Constitutive modeling of AZ31 sheet alloy with application to axial crushing, Materials Science & Engineering A, vol. 565, 203-212, 2013. DOI: https://doi.org/10.1016/j.msea.2012.12.054   DOI
6 H. T. Zhou, X.Q. Zeng, Q. D. Wang, A flow stress model for AZ61 Magnesium alloy, Acta Metallurgica Sinica, vol. 17, no. 2, pp. 155-160, 2004.
7 T. Al-Samman, G. Gottstein, Dynamic recrystallization during high temperature deformation of magnesium, Materials Science & Engineering A, vol. 490, pp. 411-420, 2008. DOI: https://doi.org/10.1016/j.msea.2008.02.004   DOI
8 Y. Qin, Q. Pan, Y. He, W. Li, X. Liu, X. Fan, Modeling of flow stress for magnesium alloy during hot deformation, Materials Science & Engineering A, vol. 527, pp. 2790-2797, 2010. DOI: https://doi.org/10.1016/j.msea.2010.01.035   DOI
9 H. Takuda, H. Fujimoto, N. Hatta, Modeling on flow stress of Mg-Al-Zn alloys at elevated temperatures, Journal of Materials Processing Technology, vol. 80-81, pp. 513-516. 1998. DOI: https://doi.org/10.1016/S0924-0136(98)00154-X   DOI
10 Z.Q. Sheng, R. Shivpuri, Modeling flow stress of magnesium alloys at elevated temperature, Materials Science & Engineering A, vol. 419, pp. 202-208, 2006. DOI: https://doi.org/10.1016/j.msea.2005.12.020   DOI
11 B. K. Raghunath, K. Raghukandan, R. Karthikeyan, K. Palanikumar, U.T.S. Pillai, R. Ashok Gandhi, Flow stress modeling of AZ91 magnesium alloys at elevated temperature, Journal of Alloys and Compounds, vol. 509, pp. 4992-4998, 2011. DOI: https://doi.org/10.1016/j.jallcom.2011.01.182   DOI
12 K. Ahn, H. Lee, J. Yoon, Material model for dynamic recrystallization of Mg-8Al-0.5Zn alloy under under uni-axial compressive deformation with variation of forming temperatures, Materials Science & Engineering A, vol. 651, pp. 1010-1017, 2016. DOI: https://doi.org/10.1016/j.msea.2015.11.055   DOI