• Title/Summary/Keyword: RTM(Resin Transfer Molding)

Search Result 68, Processing Time 0.023 seconds

Three Dimensional numerical Simulation of Resin Flow and Void Formation in Resin Transfer Molding Process (RTM 공정에서의 수지 유동과 기공 생성의 3차원 수치해석)

  • 강문구;이도훈;이우일;엄문광;이상관
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2002.10a
    • /
    • pp.284-287
    • /
    • 2002
  • During resin transfer molding(RTM) process, in case of thick parts, resin flow and void formation should be modeled three dimensionally even though for parts of small thickness, resin flow and void formation can be modeled two dimensionally. In this study, numerical simulations of three dimensional mold filling and void formation during RTM process.

  • PDF

A Study on Real Time Control of Resin Transfer Molding (RTM 공정의 실시간 제어에 관한 연구)

  • 이도훈;박윤희;이우일;엄문광;변준형
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2003.10a
    • /
    • pp.79-82
    • /
    • 2003
  • In case of performing resin transfer molding (RTM), race track effects and non-uniform fiber volume fraction may cause undesirable resin flow pattern and thus result in dry spots, which affect the mechanical properties of the finished parts. In this study, a real time RTM control strategy to reduce these unfavorable effects is proposed. Through numerical simulations and experiments, the validity of the proposed scheme is demonstrated.

  • PDF

Development of the Composite Bus Housing Panel Using RTM (RTM 을 이용한 복합재료 Bus Housing Panel의 개발)

  • 김포진;이대길
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2001.05a
    • /
    • pp.189-192
    • /
    • 2001
  • Resin transfer molding process has been widely used in the automobile industry, because the product with large area can be manufactured easily and the cost for the manufacturing is lower than that of compression molding and hand lay up method. Since RTM process is suitable for large bus housing panels, in this work, the composite housing panel was manufactured by RTM process and the mechanical properties, surface quality and the condition of manufacturing process were studied.

  • PDF

A study on Resin Filling Analysis and Experiment by VAP and VaRTM Processes (VaRTM과 VAP 공정의 수지 충진실험 및 해석에 관한 연구)

  • Dong-Hwan Yoon;Kyeong-Ho Seo;Yu-Jung Kwon;Jin-Ho Choi
    • Composites Research
    • /
    • v.36 no.5
    • /
    • pp.310-314
    • /
    • 2023
  • VaRTM(Vacuum assisted resin transfer molding) and VAP(Vacuum assisted process) processes are a type of RTM(Resin transfer molding) process, and are typical out-of-autoclave (OOA) processes that can manufacture large structures at low cost. In this paper, a resin filling test was conducted to compare the VaRTM and VAP processes, and the filling process and dimensional stability were compared. In addition, an analysis method to simulate the filling process was developed, and a dielectric sensor was used to detect the flow front of the resin, which was compared with the analysis results. From the resin filling test, the total filling time of the composite plate was measured to be 48 minutes for the VAP process and 145 minutes for the VaRTM process, and the filling time by the VAP process was reduced by about 67%. In addition, it was confirmed that the VAP process was superior to the VaRTM process in the thickness control ability and uniformity of the composite plate.

A Study on Real Time Control of Resin Transfer Molding (RTM 공정의 실시간 제어에 관한 연구)

  • Jeon Young Jae;Um Moon Kwang;Byun Joon Hyung;Lee Woo Il
    • Composites Research
    • /
    • v.18 no.4
    • /
    • pp.35-43
    • /
    • 2005
  • In resin transfer molding(RTM), race-track effects and non-uniform fiber volume fraction may cause undesirable resin flow patterns and thus result in dry spots, which affect the mechanical properties of the finished parts. In this study, a real time RTM control strategy to reduce these unfavorable effects is proposed. This control rule is accomplished by means of the permeability mapping and pressure regulation. Through numerical simulations, the validity of the proposed scheme is demonstrated.

Rapid Tooling for Resin Transfer Molding of Composites Part (복합재료 부품의 RTM 공정을 위한 쾌속금형의 제작)

  • Kim, S.K.
    • Transactions of Materials Processing
    • /
    • v.15 no.6 s.87
    • /
    • pp.436-440
    • /
    • 2006
  • A rapid tooling (RT) method fur the resin transfer molding (RTM) have been investigated. We fabricated a curved I-beam to verify the method. After creating a three-dimensional CAD model of the beam we fabricated a prototype of the model using a rapid prototyping (RP) machine. A soft mold was made using the prototype by the conventional silicone mold technique. The procedure and method of mold fabrication is described. The mold was cut into several parts to allow easier placement of the fiber preform. We conducted the resin transfer molding process and manufactured a composite beam with the mold. The preform was built by stacking up eight layers of delicately cut carbon fabrics. The fabrics were properly stitched to maintain the shape while placement. The manufactured composites beam was inspected and found well-impregnated. The fiber volume ratio of the fabricated beam was 16.85%.

Three-Dimensional Modeling of Void Formation During Resin Transfer Molding (RESIN TRANSFER MOLDING 공정에서의 기공 형성에 관한 3차원 모델링)

  • Bae, Jun-Ho;Kang, Moon-Koo;Lim, Seoug-Taek;Lee, Woo-Il
    • Proceedings of the KSME Conference
    • /
    • 2001.06c
    • /
    • pp.246-250
    • /
    • 2001
  • In resin transfer molding (RTM), resin is forced to flow through the fiber perform of inhomogeneous permeability. This inhomogeneity is responsible for the mismatch of resin velocity within and between the fiber tows. The capillary pressure of the fiber tows exacerbates the spatial variation of the resin velocity. The resulting microscopic perturbations of resin velocity at the flow front allow numerous air voids to form. In this study, a mathematical model was developed to predict the formation and migration of micro-voids during resin transfer molding. A transport equation was employed to account for the migration of voids between fiber tows. Incorporating the proposed model into a resin flow simulator, the volumetric content of micro-voids in the preform could be obtained during the simulation of resin impregnation.

  • PDF

A Study on the Manufacturing of Screw Rotors for Air-Compressors Using RTM Process (Resin Transfer Molding을 이용한 공기 압축기용 스크류로터 제작에 관한 연구)

  • 서정도;이대길
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 1999.11a
    • /
    • pp.139-142
    • /
    • 1999
  • Screw rotors are core parts of screw type air compressors, compressors in refrigerating machines and super chargers of automobiles etc. They are composed of a female and a male rotors which have complex section profiles and helically swept geometry. Screw type compressors have advantages of low noise, high efficiency, less needs in maintenance etc. Usually, machining process of screw rotors requires long machining time using CNC machine designed only for screw rotors, which increase the cost of production. In this work, the screw rotors for air-compressors were manufactured with fiber reinforced epoxy composite materials by resin transfer molding process. The mold for the RTM process was made of aluminum and silicon rubber and was designed for release of helical shape products. Composite screw rotors, manufactured by RTM process, have advantages of lightweight, less cost of production, good characteristics of vibration etc.

  • PDF

A Review of Gas How Method for Permeability Measurement and Preform Defect Detection in Resin Transfer Molding (RTM 공정에서 기체 유동을 이용한 프리폼의 투과성계수 측정 및 결함탐지 기법에 관한 고찰)

  • Kim Sun Kyoung
    • Composites Research
    • /
    • v.18 no.1
    • /
    • pp.10-15
    • /
    • 2005
  • It is useful to detect defects of a preform for resin transfer molding before and after placement into the mold. To conduct this test, the gas flow method has been developed. This method not only measures permeability but also detects defects utilizing the pressure readings obtained from the gas flow test. This paper introduces the methodology and examine the applicability to actual processes.

Development of Manufacturing Process of Composite Control Rods using Resin Transfer Molding Process (수지 충전 공정을 이용한 복합재 조종봉 제조 기술 개발)

  • 이상관;엄문광;변준형;양승운;김광수
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2000.11a
    • /
    • pp.253-256
    • /
    • 2000
  • In order to commercialize the low cost composite fabrication technology in the area of domestic aerospace structure field, Resin Transfer Molding process has been considered as an alternative process to replace the high cost autoclave technology. The end part for the development of RTM process is the control rod of flight control system of aircraft. A braided preform was triaxially designed to improve the dimensional stability and mechanical property in the direction of external loads. Through the flow analysis using CVFEM, the resin filling time was calculated and the resin injection method was determined. The results of the flow analysis were directly applied to RTM mold design. The control rod was successfully manufactured by RTM process using internal pressure. The length and outer diameter of the manufactured part are 1148mm and 32mm, respectively.

  • PDF