DOI QR코드

DOI QR Code

Anti-aging Cosmetic Application of Novel Multi-herbal Extract Composed of Nelumbo nucifera Leaves, Saururus chinensis and Orostachys japonica

하엽, 삼백초 및 와송으로 구성된 식물복합추출물의 항노화 화장품 소재로서의 응용성 연구

  • Received : 2017.03.06
  • Accepted : 2017.04.12
  • Published : 2017.06.30

Abstract

In this study, various plant extracts were screened for the effective and safe skin care ingredient according to the antioxidant activity assay guidelines. We selected an optimized combination herbal extract, Charmzone extract (CZE), which composed of Nelumbo nucifera leaves, Saururus chinensis and Orostachys japonica. CZE exerted free radical scavenging activity. It reduced reactive oxygen species formation and increased total antioxidant capacities in human keratinocyte (HaCaT) and normal human dermal fibroblasts (NHDF). CZE also leaded procollagen type 1 secretion in NHDF and decreased cellular melanin contents in B16F10. The production of nitric oxide was decreased by CZE in lipopolysaccharide-stimulated RAW264.7 in a dose dependent manner. Therefore, it is concluded that CZE can be applied for naturally derived anti-aging functional skin care ingredient for anti-oxidation, wrinkle enhancement, whitening, anti-inflammation and wound healing of skin.

본 연구에서는 효과적이고 안전한 화장품 성분 탐색을 위해 항산화 활성 가이드라인에 따라 다양한 식물 추출물을 대상으로 효능을 확인하였으며 이 중 가장 효능이 좋은 식물을 발굴하고 이를 최적의 비율로 혼합하여 Charmzone Extract (CZE)로 명명하였다. CZE는 하엽(Nelumbo nucifera leaves), 삼백초(Saururus chinensis) 및 와송(Orostachys japonica)으로 구성된 식물복합추출물로, 본 연구에서는 CZE의 항노화 화장품 원료로서의 개발 가능성을 확인해 보고자 하였다. CZE는 자유 라디칼 소거 활성을 가지고 있었으며, 인간 각질형성세포주인 HaCaT 및 인간 섬유아세포 NHDF에서 활성산소종의 생성을 억제하고 총항산화능을 증가시켰다. 그리고 NHDF에서 제1형 프로콜라겐의 분비를 촉진하였고, B16F10 세포에서 멜라닌의 생성을 감소시켰으며, RAW264.7 세포에서 lipopolysaccharide 자극에 의한 산화질소의 생성을 농도 의존적으로 저해하였다. 또한, CZE는 HaCaT의 이동을 촉진하는 효능을 나타내었다. 결과를 종합하면, CZE는 항산화, 주름개선, 미백, 항염증 및 상처치유의 다효능을 나타내며, 이러한 효능을 통해 피부 기능을 향상시킬 수 있을 것이라고 기대된다. 그러므로 식물복합추출물 CZE는 피부 항노화용 화장품 성분으로 응용 가능하다.

Keywords

References

  1. H. J. Nam and Y. B. Kim, Aging and skin aging, J. Orient. Med. Ophthalmol. Otolaryngol. Dermatol., 17(1), 16 (2004).
  2. J. M. Han, S. W. Ko, and H. J. Yoon, The study on the korean and western medical literatures for aging and skin aging, J. Kor. Med. Ophthalmol. Otolaryngol. Dermatol., 27(1), 45 (2014). https://doi.org/10.6114/JKOOD.2014.27.1.045
  3. K. H. Cho, M. K. Lee, S. J. Jo, K. H. Kim, K. C. Park, H. C. Eun, and J. H. Chung, Histologic changes in the skin with photoaging, Kor. J. Dermatol., 41(6), 754 (2003).
  4. T. Quan, Z. Qin, W. Xia, Y. Shao, J. J. Voorhees, and G. J. Fisher, Matrix-degrading metalloproteinases in photoaging, J. Investig. Dermatol. Symp. Proc., 14(1), 20 (2009). https://doi.org/10.1038/jidsymp.2009.8
  5. D. Darr and I. Fridovich, Free radicals in cutaneous biology, J. Investig. Dermatol., 102(5), 671 (1994). https://doi.org/10.1111/1523-1747.ep12374036
  6. G. J. Fisher, S. Kang, J. Varani, Z. Bata-Csorgo, Y. Wan, S. Datta, and J. J. Voorhees, Mechanisms of photoaging and chronological skin aging, Arch. Dermatol., 138(11), 1462 (2002).
  7. M. J. Ryu and S. Y. Lee, Antioxidant effects of Plantago asiatica and protective effect sonhuman HaCaT keratinocyte, J. Kor. Soc. Beauty Cult. Arts, 11(3), 15 (2010).
  8. J. K. Hong, A study on skin aging caused by free-radical and on efficacy of antioxidant vitamins, Kor. J. Aesth. Soc., 7(2), 51 (2009).
  9. N. Lynch and D. Berry, Differences in perceived risks and benefits of herbal, over-the-counter conventional, and prescribed conventional, medicines, and the implications of this for the safe and effective use of herbal products, Complement. Ther. Med., 15(2), 84 (2007). https://doi.org/10.1016/j.ctim.2006.06.007
  10. E. J. Cho, T. Yokozawa, D. Y. Rhyu, S. C. Kim, N. Shibahara, and J. C. Park, Study on the inhibitory effects of Korean medicinal plants and their main compounds on the 1,1-diphenyl- 2-picrylhydrazyl radical. Phytomedicine, 10(6-7), 544 (2003). https://doi.org/10.1078/094471103322331520
  11. M. Pulok, M. Debajyoti, M. Amal, and H. Michael, The sacred lotus (Nelumbo nucifera) - Phytochemical and therapeutic profile, J. Pharm. Pharmacol., 61(4), 407 (2009). https://doi.org/10.1211/jpp.61.04.0001
  12. Y. Kashiwada, A. Aoshima, Y. Ikeshiro, Y. P. Chen, H. Furukawa, M. Itoigawa, T. Fujioka, K. Mihashi, L. M. Cosentino, S. L. Morris Natschke, and K. H. Lee, Anti-HIV benzylisoquinoline alkaloids and flavonoids from the leaves of Nelumbo nucifera and structure-activity correlations with related alkaloids, Bioorg. Med. Chem., 13(2), 443 (2005). https://doi.org/10.1016/j.bmc.2004.10.020
  13. S. R. Kang, E. Y. Park, M. S. Park, J. Park, and Y. C. Park, Antioxidative and collagen synthetic abilities of Gardeniae fructus and Saururus chinensis water extracts, J. Investig. Cosmetol., 7(2), 165 (2011). https://doi.org/10.15810/jic.2011.7.2.010
  14. C. S. Kang, M. J. LEE, C. B. Park, and I. S. Bang, Study on the antioxidative and physiological activities of Saururus chinensis extract, J. Life Sci., 22(6), 807 (2012). https://doi.org/10.5352/JLS.2012.22.6.807
  15. J. Y. Hwang, J. Zhang, M. J. Kang, S. K. Lee, H. A. Kim, and J. I. Kim, Hypoglycemic and hypolipidemic effects of Sarurus chinensis baill in streptozotocin- induced diabetic rats, Nutrit. Res. Pract., 1(2), 100 (2007). https://doi.org/10.4162/nrp.2007.1.2.100
  16. H. J. Kim, J. Y. Lee, S. M. Kim, D. A. Park, C. B. Jin, S. P. Hong, and Y. S. Lee, A new epicatechin gallate and calpain inhibitory activity from Orostachys japonicas, Fitoterapia, 80(1), 73 (2009). https://doi.org/10.1016/j.fitote.2008.10.003
  17. D. Y. Shin, W. S. Lee, J. H. Jung, S. H. Hong, C. Park, H. J. Kim, G. Y. Kim, H. J. Hwang, G. S. Kim, J. M. Jung, C. H. Ryu, S. C. Shin, S. C. Hong, and Y. H. Choi, Flavonoids from Orostachys japonicus A. Berger Inhibit the Invasion of LnCaP Prostate Carcinoma Cells by Inactivating Akt and Modulating Tight Junctions, Int. J. Mol. Sci., 14(9), 18407 (2013). https://doi.org/10.3390/ijms140918407
  18. H. J. Park, H. S. Young, K. Y. Park, S. H. Rhee, H. Y. Chung, and J. S. Choi, Flavonoids from the whole plants of Orostachys japonicas, Arch. Pharm. Res., 14(2), 167 (1991). https://doi.org/10.1007/BF02892023
  19. Y. S. Yoon, K. S. Kim, S. G. Hong, B. J. Kang, M. Y. Lee, and D. W. Cho, Protective effects of Orostachys japonicas A. Berger (Crassulaceae) on $H_2O_2$-induced apoptosis in GT1-1 mouse hypothalamic neuronal cell line, J. Ethnopharmacol. 69, 73 (2000). https://doi.org/10.1016/S0378-8741(99)00107-5
  20. N. Y. Yoon, B. S. Min, H. K. Lee, J. C. Park, and J. S. Choi, A potent anti - complementary acylated sterol glucoside from Orostachys japonicas, Arch. Pharm. Res., 28(8), 892 (2005). https://doi.org/10.1007/BF02973873
  21. H. S. Lee, D. Bilehale, G. S. Lee, D. S. Ryu, H. K. Kim, D. H. Suk, and D. S. Lee, Anti-inflammatory effect of the hexane fraction from Orostachys japonicus in RAW264.7 cells by suppression of NF-TEX>${\kappa}B$ and PI3K-Akt signaling, Journal of functional food, 5, 1217 (2013). https://doi.org/10.1016/j.jff.2013.04.004
  22. C. H. Kim, J. H. Park, J. K. Lim, K. J. Lee, G. Y. Chung, and H. J. Jeong, The activity of antioxidants and suppression of cancer cell proliferation in extracts of Orostachys japonicas A. Berger, Korean J. Medicinal Crop Sci., 11(1), 31 (2003).
  23. J. H. Lee, S. J. Lee, S. M Park, H. K. Kim, W. Y. Jeong, J. Y Choi, N. J. Sung, W. S. Lee, C. S. Lim, G. S. Kim, and S. C. Shin, Characterisation of flavonoids in Orostachys japonicus A. Berger using HPLC-MS/MS: Contribution to the overall antioxidant effect, Food Chemistry, 124(4) 1627 (2011). https://doi.org/10.1016/j.foodchem.2010.08.031
  24. M. J. Kim, S. W. Woo, M. S. Kim, J. E. Park, and J. K. Hwang, Anti-photoaging effect of aaptamine in UVB irradiated human dermal fibroblasts and epidermal keratinocytes, J. Asian Nat. Prod. Res., 16(12), 1139 (2014). https://doi.org/10.1080/10286020.2014.983092
  25. M. S. Kim, Y. G. Park, H. J. Lee, S. J. Lim, and C. W. Nho, Youngiasides A and C isolated from Youngia denticulatum inhibit UVB-induced MMP expression and promote type I procollagen production via repression of MAPK/ AP-1/NF-${\kappa}B$ and activation of AMPK/Nrf2 in HaCaT cells and human dermal fibroblasts, J. Agric. Food Chem., 63(22), 5428 (2015). https://doi.org/10.1021/acs.jafc.5b00467
  26. J. L. Song and Y. Gao, Protective effects of Lindera coreana on UVB-induced oxidative stress in human HaCaT keratinocytes, Iran. J. Pharmaceut. Res., 13(4), 1369 (2014).
  27. G. A. Di Lullo, S. M. Sweeney, J. Korkko, L. Ala-Kokko, and J. D. San Antonio, Mapping the ligand- binding sites and disease-associated mutations on the most abundant protein in the human, type I collagen, J. Biol. Chem., 277(6), 4223 (2002). https://doi.org/10.1074/jbc.M110709200
  28. W. Cheng, R. Yan-hua, N. Fang-gang, and Z. Guo-an, The content and ratio of type I and III collagen in skin differ with age and injury, Afr. J. Biotechnol., 10(13), 2524 (2011).
  29. Y. H. Rong, G. A. Zhang, and C. Wang, Quantification of type-I and type-III collagen content of normal skin among groups of different ages, Chin. J. Burns, 24(1), 51 (2008).
  30. Y. C. Hou, A. Janczuk, and P. G. Wang, Current trends in the development of nitric oxide donors, Curr. Pharmaceut. Design, 5(6), 417 (1999).
  31. T. Osanai, N. Fujiwara, M. Saitoh, S. Sasaki, H. Tomita, M. Nakamura, H. Osawa, and H. Yamabe, Relationship between salt intake, nitric oxide and asymmetric dimethylarginine and its relevance to patients with end-stage renal disease, Blood Purify, 20(5), 466 (2002). https://doi.org/10.1159/000063555
  32. N. Akdeniz, A. Aktas, T. Erdem, M. Akyuz, and S. Ozdemir, Nitric oxide levels in atopic dermatitis, Pain Clin., 16(4), 401 (2013).
  33. S. H. Eom, E. H. Lee, K. B. H. Park, J. Y. Kwon, P. H. Kim, W. K. Jung, and Y. M. Kim, Eckol from Eisenia bicyclis inhibits inflammation through the AKT/NF-kB signaling in Propionibacterium acnes-induced human keratinocyte HaCaT Cells, J. Food Biochem., http://dx.doi.org/10.1111/jfbc.12312 (2016).
  34. Q. T. Smith, Clinical and Biological Springer US Aspects, 31, Collagen metabolism in wound healing (1975).