DOI QR코드

DOI QR Code

Effects of Dispersive Condition and Surface Free Energy Change of MWCNT on Mechanical Properties of Amino-functionalized MWCNT/Carbon Fibers-reinforced Epoxy Composites

아민 기능화된 탄소나노튜브의 분산상태 및 표면자유 에너지 변화가 탄소나노튜브/탄소섬유강화 복합소재의 기계적 특성에 미치는 영향

  • Choi, Woong-Ki (Korea Institute of Carbon Convergence Technology) ;
  • Park, Gil-Young (Korea Institute of Carbon Convergence Technology) ;
  • Shin, Hong-Suk (Korea Institute of Carbon Convergence Technology) ;
  • Kuk, Yun-Su (Korea Institute of Carbon Convergence Technology) ;
  • Kim, Byung-Shuk (Department of Organic Materials and Fibers Engineering, Chonbuk National University) ;
  • Seo, Min-Kang (Korea Institute of Carbon Convergence Technology)
  • Received : 2017.05.27
  • Accepted : 2017.06.20
  • Published : 2017.06.30

Abstract

In this work, the effects of the dispersive condition and surface energy change of multi-walled carbon nanotube (MWCNT) on the mechanical properties of amino-functionalized MWCNT containing carbon fibers-reinforced epoxy composites were studied. Amino-functionalization of MWCNT was carried out by grafting spermidine and p-phenylenediamine onto the surfaces of MWCNT through amidation. The surface properties of the MWCNT before and after amidation were observed using scanning electron microscope (SEM), Fourier transform infrared (FT-IR), X-ray photoelectron spectroscope (XPS), microscope, and contact angle measurements. Theoretical interfacial adhesions between the MWCNT and the epoxy resins were studied by calculating the work of adhesion and demonstrated by interlaminar shear strength (ILSS). From the experimental results, it was found that amino-functionalized MWCNT showed quite a homogeneous dispersion state in epoxy matrix resins. Additionally, the interfacial adhesions could be improved by amino-functionalizing MWCNTs surfaces. Consequently, the introduction of an amino-functional group on MWCNT surfaces positively affected the dispersibility of MWCNT, which resulted in improving the mechanical properties of the carbon fibers-reinforced epoxy composites.

Keywords

References

  1. J. Baur and E. Silverman, "Challenges and Opportunities in Multifunctional Nanocomposites Structures for Aerospace Application", MRS Bull., 2007, 32, 328−334. https://doi.org/10.1557/mrs2007.231
  2. O. Breuer and U. Sundararaj, "Big Returns form Small Fibers: A Review of Polmer/Carbon Nanotube Composites", Polym. Compos., 2004, 25, 630−645. https://doi.org/10.1002/pc.20058
  3. W. M. Chen, Y. H. Yu, P. Li, and C. Z. Wang, "Effect of New Epoxy Matrix for T800 Carbon Fiber/epoxy Filament Wound Composites", Compos. Sci. Technol., 2007, 67, 2261−2270. https://doi.org/10.1016/j.compscitech.2007.01.026
  4. M. Li, Y. Z. Gu, H. Liu, Y. X. Li, S. K. Wang, Q. Wu, and Z. G. Zhang, "Investigation the Interphase Formation Process of Carbon Fiber/Epoxy Composites Using a Multiscale Simulation Method", Compos. Sci. Technol., 2013, 86, 117−121. https://doi.org/10.1016/j.compscitech.2013.07.008
  5. Q. Zhang, S. Liang, G. Sui, and X. Yang, "Influence of Matrix Modulus on the Mechanical and Interfacial Properties of Carbon Fiber Filament Wound Composites", RSC Adv., 2015, 5, 25208−25214.
  6. J. Gulya, E. Foldes, A. Lazar, and B. Pulanszky, "Electrochemical Oxidation of Carbon Fibers: Surface Chemistry and Adhesion", Compos. A, 2001, 32, 353−360. https://doi.org/10.1016/S1359-835X(00)00123-8
  7. A. Fukunaga, S. Ueda, and M. Magumo, "Anodic Surface Oxidation Mechanism of PAN-based and Pitch-based Carbon Fibers", J. Mater. Sci., 1999, 34, 2851−2854. https://doi.org/10.1023/A:1004679200908
  8. M. Delamar, G. Desarmot, O. Fagebaume, R. Hitmi, J. Pinson, and J. M. Savent, "Modification of Carbon Fiber Surfaces by Electro-chemical Reduction of Aryl Diazonium Salts: Application to Carbon Epoxy Composites", Carbon, 1997, 35, 801−807. https://doi.org/10.1016/S0008-6223(97)00010-9
  9. M. R. Alexander and F. R. Jones, "Effect of Electrolytic Oxidation Upon the Surface Chemistry of Type A Carbon Fibers-Part II, Analysis of Derivatised Surface Functionalities by XPS, TOF SIMS", Carbon, 1995, 33, 569−580. https://doi.org/10.1016/0008-6223(94)00142-M
  10. J. Li, "Effects of Fiber Surface Treatment on Wear Characteristics of Carbon Fiber Reinforced Polyamide 6 Composites", Iran J. Chem. Chem. Eng., 2010, 29, 141−147.
  11. M. H. Choi, B. H. Jeon, and I. J. Chung, "The Effect of Coupling Agent on Electrical and Mechanical Properties of Carbon Fiber/phenolic Resin Composites", Polymer, 2000, 41, 3243−3252. https://doi.org/10.1016/S0032-3861(99)00532-7
  12. M. K. Seo and S. J. Park, "Surface Charateristics of Direct Fluorinated Single-walled Carbon Nanotubes", Bull. Korean Chem. Soc., 2009, 30, 2071−2075.
  13. M. K. Seo, J. R. Lee, and S. J. Park, "Crystallization Kinetics and Interfacial Behaviors of Polypropylene Composites Reinforced with Multi-walled Carbon Nanotubes", Mater. Sci. Eng., A, 2005, 404, 79−84.
  14. E. Bekyarova, E. T. Thostenson, A. Yu, H. Kim, and J. Gao, "Multiscale Carbon Nanotube Carbon Fiber Reinforcement for Advanced Epoxy Composites", Langmuir, 2007, 23, 3970− 3074. https://doi.org/10.1021/la062743p
  15. W. T. Chou, L. M. Gao, E. T. Thostenson, Z. G. Zhang, and J. H. Byun, "An Assessment of the Science and Technology of Carbon Nanotube-based Fibers and Composites", Compos. Sci. Technol., 2010, 70, 1−19. https://doi.org/10.1016/j.compscitech.2009.10.004
  16. N. G. Sahoo, S. Rana, J. W. Cho, L. Li, and S. H. Chan, "Polymer Nanocomposites Based on Functinalized Carbon Nanotubes", Prog. Polym. Sci., 2010, 35, 837−867.
  17. M. Bottini, S. Bruckner, K. Nika, N. Bottini, S. Bellucci, and A. Magrini, "Multi-walled Carbon Nanotubes Induce T Lymphocyte Apoptosis", Toxicol. Lett., 2006, 160, 121−126.
  18. J. Sandler, M. S. P. Shaffer, T. Prasse, W. Bauhofer, K. Schulte, and A. H. Windle, "Development of a Dispersion Process for Carbon Nanotube in an Epoxy Marix and the Resulting Electrical Properties", Polymer, 1999, 40, 5967−5971.
  19. K. B. Shelimov, R. O. Esenaliev, A. G. Rinzler, C. B. Huffman, and R. E. Smalley, "Purification of Single-wall Carbon Nanotubes by Ultrasonically Assisted Filtration", Chem. Phys. Lett., 1998, 282, 429−434.
  20. F. H. Gojny, M. H. G. Wichmann, U. Kopke, B. Fiedler, and K. Schulte, "Carbon Nanotube-reinforced Epoxy-compositesenhanced Stiffness and Fracture Toughness at Low Nanotube Contents", Compos. Sci. Technol., 2004, 64, 2363−2371.
  21. L. Yunfeng, Z. Yan, D. Yuexin, and D. Shanyi, "Surface and Wettability Property Analysis of CCF300 Carbon Fibers with Different or Without Sizing", Mater. Des., 2011, 32, 941−946.
  22. J. Wang, Z. Fang, A. Gu, L. Xu, and F. Liu, "Effect of Aminofunctionalization of Multi-walled Carbon Nanotubes on the Dispersion with Epoxy Resin Matrix", J. Appl. Polym. Sci., 2006, 100, 97−104.
  23. C. J. Van Oss, W. Wu, A. Docoslis, and R. F. Giese, "The Interfacial Tensions with Water and the Lewis Acid-base Surface Tension Parameters of Polar Organic Liquids Derived from Their Aqueous Solubilities", Colloids Surf., B, 2001, 20, 87−91.
  24. Y. X. Zhou, P. X. Wu, Z. Y. Cheng, J. Ingram, and S. Jeelani, "Improvement in Electrical, Thermal and Mechanical Properties of Epoxy by Filling Carbon Nanotube", Express Polym. Lett., 2008, 2, 40−48.
  25. S. J. V. Frankland, A. Caglar, D. W. Brenner, and M. Griebel, "Molecular Simulation of the Influence of Chemical Crosslinks on the Shear Strength of Carbon Nanotube-polymer Interfaces", J. Phys. Chem. B, 2002, 106, 3046−3048.
  26. S. Bose, R. A. Khare, and P. Moldenaers, "Assessing the Strengths and Weaknesses of Various Types of Pre-treatments of Carbon Nanotubes on the Properties of Polymer/carbon Nanotubes Composites: A Critical Review", Polymer, 2010, 51, 975−993.
  27. M. K. Seo and S. J. Park, "Surface Characteristics of Carbon Fibers Modified by Direct Oxyfluorination", J. Colloid Interface Sci., 2009, 339, 237−242.
  28. Y. M. Yang and G. Zografi, "Use of the Washburn-rideal Equation for Studying Capillary Flow in Porous Media", J. Pharm. Sci., 1986, 75, 719−721.
  29. W. R. Gaillard, E. Waddell, and J. D. Williams, "Surface Free Energy Determination of APEX Photosensitivie Glass", Micromachines, 2016, 7, 34−44.
  30. J. F. Dai, G. J. Wang, L. Ma, and C. K. Wu, "Surface Properties of Graphene : Relationship to Graphene-polymer Composites", Rev. Adv. Mater. Sci., 2015, 40, 60−70.
  31. W. V. Andrew, T. B. K. Khoo, and D. T. Jacobs, "Testing the Lorentz-Lorenz Relation in the Nea-critical Binary Fluid Mixture Isobutyric Acid and Water", J. Chem. Phys., 1986, 85, 3985−3991.
  32. F. H. Gojny, J. Nastalczyk, Z. Roslaniec, and K. Schulte "Surface Modified Carbon Nanotubes in CNT/epoxy-Composites", Chem. Phys. Lett., 2003, 370, 820−824.