DOI QR코드

DOI QR Code

Comparison of proximate compositions, antioxidant, and antiproliferative activities between blueberry and Sageretia thea (Osbeck) M.C.Johnst fruit produced in Jeju Island

제주산 블루베리와 상동열매의 일반성분, 항산화 및 항증식 활성 비교

  • Ko, Gyeong-A (Faculty of Biotechnology, College of Applied Life Sciences, SARI, Jeju National University) ;
  • Koh, So Yae (Faculty of Advanced Convergence Technology and Science, Jeju National University) ;
  • Ryu, Ji-yeon (School of Biomaterials Sciences and Technology, College of Applied Life Sciences, SARI, Jeju National University) ;
  • Cho, Somi Kim (Faculty of Biotechnology, College of Applied Life Sciences, SARI, Jeju National University)
  • Received : 2017.05.05
  • Accepted : 2017.06.05
  • Published : 2017.06.30

Abstract

This study was aimed to evaluate and compare the proximate composition, antioxidant and antiproliferative activities of Sageretia thea (Osbeck) M.C.Johnst (S. thea) fruit and blueberry. The calorific value, crude protein, crude fat, crude ash, and carbohydrate were higher in S. thea fruit than in blueberry. S. thea fruit and blueberry have different profile of free sugars, in which amounts of fructose, glucose, and maltose were much higher in S. thea fruit than in blueberry. The methanol extracts of S. thea fruit contain higher amounts of total polyphenol and anthocyanin compared to those of blueberry extracts. In additions, 2,2-diphenyl-1-picrylhydrazyl (DPPH), alkyl, and 2,2'-azinobis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS) radical scavenging activities are greater in S. thea fruit extracts. Ethyl acetate fractions and n-butanol fractions of S. thea fruit and blueberry show the most potent scavenging activity in DPPH-, alkyl-, and ABTS-radical scavenging assay. The ethyl acetate fractions of S. thea fruit and blueberry are the richest fraction in polyphenol contents while the n-butanol fractions of those are the highest fraction in anthocyanin contents. Furthermore, both S. thea fruit and blueberry extracts protect human dermal fibroblast cells against a $H_2O_2$-induced oxidative stress. The antiproliferative activities of n-hexane and chloroform fraction from S. thea fruit and blueberry were observed in AGS human gastric cancer and MDA-MB-231 human breast cancer cells. Therefore, our results suggest for the first time that the antioxidant and antiproliferative activities of S. thea fruit is comparable to that of blueberry and the nutritional value of the former is even superior to that of the latter.

본 연구에서는 블루베리의 형태 및 풍미와 유사한 상동열매의 일반성분과 항산화 활성을 비교하였다. 열량, 조단백, 조회분, 탄수화물 및 유리당은 상동열매가 블루베리에 비해 더 높았으며 수분은 블루베리가 더 높은 것으로 나타났다. 상동열매의 주요 유리당은 fructose, glucose 및 maltose로 나타난 반면, 블루베리에서는 maltose가 검출되지 않았다. 상동열매와 블루베리를 각각 80% 메탄올로 추출한 후, 헥산, 클로로포름, 에틸아세테이트, 부탄올 및 물층으로 용매 분획하여 이들의 폴리페놀 및 안토시아닌 함량과 항산화 활성을 비교하였다. 상동열매 메탄올 추출물이 블루베리 메탄올 추출보다 폴리페놀 함량과 안토시아닌 함량 모두 높게 나타났으며, 아울러 DPPH, alkyl, 및 ABTS 라디칼 소거 활성 또한 더 우수하였다. 용매 분획물들을 대상으로 항산화 효능을 비교했을 때, 상동열매와 블루베리 모두 폴리페놀 함량이 상대적으로 높았던 에틸아세테이트 분획물의 DPPH와 alkyl radical 소거 활성이 가장 우수했으며, 안토시아닌 함량이 높은 부탄올 분획물의 ABTS radical 소거 활성이 상대적으로 우수하였다. 특히, 안토시아닌 함량이 상대적으로 높았던 상동열매 부탄올 분획물의 ABTS 라디칼 소거 활성은 블루베리 부탄올 분획물에 비해 상대적으로 우수하였다. 상동열매와 블루베리 메탄올 추출물은 피부세포에서의 $H_2O_2$로 유도된 산화적 스트레스로부터 세포 보호 효과를 나타냈으며, 블루베리와 비교하여 상동열매에서 그 효능이 더 우수한 것으로 나타났다. 또한 상동열매와 블루베리의 헥산 분획물과 클로로포름 분획물이 위암(AGS)와 유방암(MDA-MB-231)세포에 대한 증식억제 활성이 확인되었다. 본 연구에서는 최초로 상동열매와 블루베리의 일반성분, 항산화 및 항암 활성을 비교하였으며, 상동열매가 블루베리보다 상대적으로 높은 함량의 폴리페놀과 안토시아닌을 함유할 뿐만 아니라 블루베리보다 우수하거나 그에 필적한 항산화 및 항암 활성을 나타내고 있어, 항산화 식품 및 천연 항산화 소재 로서의 활용가치가 클 것으로 사료된다.

Keywords

References

  1. Abdel-Aal E-SM, Hucl P (2003) Composition and stability of anthocyanins in blue-grained wheat. J Agric food Chem 51: 2174-2180 https://doi.org/10.1021/jf021043x
  2. Adams LS, Phung S, Yee N, Seeram NP, Li L, Chen S (2010) Blueberry phytochemicals inhibit growth and metastatic potential of MDA-MB-231 breast cancer cells through modulation of the phosphatidylinositol 3-kinase pathway. Cancer Res 70: 3594-3605 https://doi.org/10.1158/0008-5472.CAN-09-3565
  3. Amarowicz R, Pegg RB, Rahimi-Moghaddam P, Barl B, Weil JA (2004) Free-radical scavenging capacity and antioxidant activity of selected plant species from the Canadian prairies. Food Chem 84: 551-562 https://doi.org/10.1016/S0308-8146(03)00278-4
  4. Ames BN, Shigenaga MK, Hagen TM (1993) Oxidants, antioxidants, and the degenerative diseases of aging. Proc Nati Acad Sci USA 90: 7915-7922 https://doi.org/10.1073/pnas.90.17.7915
  5. An YH, Lee IS, Kim HS (2015) Quality Characteristics of Sikhye made with Berries. Korean J Food Cook Sci 27: 803-814
  6. Awika JM, Rooney LW, Wu X, Prior RL, Cisneros-Zevallos L (2003) Screening methods to measure antioxidant activity of sorghum (Sorghum bicolor) and sorghum products. J Agric Food Chem 51: 6657-6662 https://doi.org/10.1021/jf034790i
  7. Bin Sayeed MS, Ameen SS (2015) Beta-sitosterol: a promising but orphan nutraceutical to fight against cancer. Nutr Cancer 67: 1216-1222 https://doi.org/10.1080/01635581.2015.1087042
  8. Bridle P, Timberlake C (1997) Anthocyanins as natural food colours-selected aspects. Food Chem 58: 103-109 https://doi.org/10.1016/S0308-8146(96)00222-1
  9. Carmichael J, DeGraff WG, Gazdar AF, Minna JD, Mitchell JB (1987) Evaluation of a tetrazolium-based semiautomated colorimetric assay: assessment of chemosensitivity testing. Cancer Res 47: 936-942
  10. Cechovska L, Cejpek K, Konecny M, Velisek J (2011) On the role of 2,3-dihydro-3,5-dihydroxy-6-methyl-(4H)-pyran-4-one in antioxidant capacity of prunes, Eur Food Res Technol 233:367-376 https://doi.org/10.1007/s00217-011-1527-4
  11. Cheung LM, Cheung PCK, Ooi VEC (2003) Antioxidant activity and total phenolics of edible mushroom extracts. Food Chem 81: 249-255 https://doi.org/10.1016/S0308-8146(02)00419-3
  12. Cho WJ, Song BS, Lee JY, Kim JK, Kim JH, Yoon YH, Choi JI, Kim GS, Lee JW (2010) Composition Analysis of Various Blueberries Produced in Korea and Manufacture of Blueberry Jam by Response Surface Methodology J Korean Soc Food Sci Nutr
  13. Chung HJ (2015) Comparative study of antioxidant activity of imported tropical and subtropical fruits. Korean J Food Preserv 22: 577-584 https://doi.org/10.11002/kjfp.2015.22.4.577
  14. Chung SK, Chen CYO, Blumberg JB (2009) Flavonoid-rich fraction from Sageretia theezans leaves scavenges reactive oxygen radical species and increases the resistance of low-density lipoprotein to oxidation. J Med Food 12: 1310-1315 https://doi.org/10.1089/jmf.2008.1309
  15. Chung SK, Kim YC, Takaya Y, Terashima K, Niwa M (2004) Novel flavonol glycoside, 7-O-methyl mearnsitrin, from Sageretia theezans and its antioxidant effect. J Agric Food Chem 52: 4664-4668 https://doi.org/10.1021/jf049526j
  16. Cikman O, Soylemez O, Ozkan OF, Kiraz HA, Sayar I, Ademoglu S, Taysi S, Karaayvaz M (2015) Antioxidant Activity of Syringic Acid Prevents Oxidative Stress in l-arginine-Induced Acute Pancreatitis: An Experimental Study on Rats. Int Surg 100: 891-896 https://doi.org/10.9738/INTSURG-D-14-00170.1
  17. de Souza VR, Pereira PA, da Silva TL, de Oliveira Lima LC, Pio R, Queiroz F (2014) Determination of the bioactive compounds, antioxidant activity and chemical composition of Brazilian blackberry, red raspberry, strawberry, blueberry and sweet cherry fruits. Food Chem 156: 362-368 doi:10.1016/j.foodchem.2014.01.125
  18. Floegel A, Kim DO, Chung SJ, Koo SI, Chun OK (2011) Comparison of ABTS/DPPH assays to measure antioxidant capacity in popular antioxidant-rich US foods. J Food Compos Anal 24: 1043-1048 https://doi.org/10.1016/j.jfca.2011.01.008
  19. Food K, Association D (2005) Food standards codex Korean Foods Industry Association Seoul, Korea: 367-368
  20. Francis FJ (1989) Food colorants: anthocyanins. Crit Rev Food Sci Nutr 28: 273-314 https://doi.org/10.1080/10408398909527503
  21. Hiramoto K, Johkoh H, Sako K, Kikugawa K (1993) DNA breaking activity of the carbon-centered radical generated from 2, 2-azobis (2-amidinopropane) hydrochloride (AAPH). Free Radic Res Commun 19: 323-332 https://doi.org/10.3109/10715769309056521
  22. Horwitz W, Chichilo P, Reynolds H (1970) Official methods of analysis of the Association of Official Analytical Chemists Official methods of analysis of the Association of Official Analytical Chemists
  23. Hyon JS, Kang SM, Han SW, Kang MC, Oh MC, Oh CK, Kim DW, Jeon YJ, Kim SH (2009) Flavonoid Component Changes and Antioxidant Activities of Fermented Citrus grandis Osbeck Peel. Journal of food science and nutrition 38: 1310-1316
  24. Hyun TK, Song SC, Song CK, Kim JS (2015) Nutritional and nutraceutical characteristics of Sageretia theezans fruit. J Food Drug Analy 23: 742-749 https://doi.org/10.1016/j.jfda.2015.04.006
  25. Jang HH, Nam SY, Kim MJ, Kim JB, Kim HR, Lee YM (2014) Antioxidant Activity and Protective Effects of Anthocyanins-Rich Fraction from Korean Purple Sweet Potato Variety, "Shinjami" against Oxidative Stress in HepG2 Cell. Korean J Food & Nutr 27: 1090-1095 https://doi.org/10.9799/ksfan.2014.27.6.1090
  26. Jang HL, Yoon KY (2012) Biological Activities and Total Phenolic Content of Ethanol Extracts of White and Flesh-colored Solanum tuberosum L. Potatoes. J Korean Soc Food Sci Nutr 41: 1035-1040 https://doi.org/10.3746/jkfn.2012.41.8.1035
  27. Jubri Z, Rahim NBA, Aan GJ (2013) Manuka honey protects middle-aged rats from oxidative damage. Clinics (Sao Paulo) 68: 1446-1454 https://doi.org/10.6061/clinics/2013(11)11
  28. Kim J, Lee J, Park S (2011) Seed atlas of Korean plants. Academy Publishing, Seoul (in Korean)
  29. Kumar S, Prahalathan P, Raja B (2011) Antihypertensive and antioxidant potential of vanillic acid, a phenolic compound in L-NAME-induced hypertensive rats: a dose-dependence study. Redox Rep 16: 208-215 https://doi.org/10.1179/1351000211Y.0000000009
  30. Lee SO, Lee HJ, Yu MH, Im HG, Lee IS (2005) Total polyphenol contents and antioxidant activities of methanol extracts from vegetables produced in Ullung island. Korean J Food Sci and Technol 37: 233-240
  31. Lee Y, Lee JH, Kim SD, Shang MS, Jo IS, Kim SJ, Hwang KT, Jo HB, Kim JH (2015) Chemical Composition, Functional Constituents, and Antioxidant Activities of Berry Fruits Produced in Korea. J Korean Soc Food Sci Nutr 44: 1295-1303 https://doi.org/10.3746/jkfn.2015.44.9.1295
  32. Lemanska K, Szymusiak H, Tyrakowska B, Zielinski R, Soffers AE, Rietjens IM (2001) The influence of pH on antioxidant properties and the mechanism of antioxidant action of hydroxyflavones. Free Radic Biol Med 31: 869-881 https://doi.org/10.1016/S0891-5849(01)00638-4
  33. Loo AY, Jain K, Darah I (2008) Antioxidant activity of compounds isolated from the pyroligneous acid, Rhizophora apiculata. Food Chem 107: 1151-1160 https://doi.org/10.1016/j.foodchem.2007.09.044
  34. Martineau LC, Couture A, Spoor D, Benhaddou-Andaloussi A, Harris C, Meddah B, Leduc C, Burt A, Vuong T, Mai Le P, Prentki M, Bennett SA, Arnason JT, Haddad PS (2006) Anti-diabetic properties of the Canadian lowbush blueberry Vaccinium angustifolium Ait. Phytomedicine 13: 612-623 https://doi.org/10.1016/j.phymed.2006.08.005
  35. Naczk M, Shahidi F (2003) Phenolic compounds in plant foods: chemistry and health benefits. Nutraceuticals and Food 8: 200-218
  36. Nanjo F, Goto K, Seto R, Suzuki M, Sakai M, Hara Y (1996) Scavenging effects of tea catechins and their derivatives on 1, 1-diphenyl-2-picrylhydrazyl radical. Free Radic Biol Med 21: 895-902 https://doi.org/10.1016/0891-5849(96)00237-7
  37. Ozturk Sarikaya SB (2015) Acethylcholinesterase inhibitory potential and antioxidant properties of pyrogallol. J Enzyme Inhib Med Chem 30: 761-766 https://doi.org/10.3109/14756366.2014.965700
  38. Pan MH, Chang YH, Badmaev V, Nagabhushanam K, Ho CT (2007) Pterostilbene induces apoptosis and cell cycle arrest in human gastric carcinoma cells. J Agric Food Chem 55: 7777-7785 https://doi.org/10.1021/jf071520h
  39. Papandreou MA, Dimakopoulou A, Linardaki ZI, Cordopatis P, Klimis-Zacas D, Margarity M, Lamari FN (2009) Effect of a polyphenol-rich wild blueberry extract on cognitive performance of mice, brain antioxidant markers and acetylcholinesterase activity. Behav Brain Res 198: 352-358 https://doi.org/10.1016/j.bbr.2008.11.013
  40. Park JC, Hur JM, Park JG, Hatano T, Yoshida T, Miyashiro H, Min BS, Hattori M (2002) Inhibitory effects of Korean medicinal plants and camelliatannin H from Camellia japonica on human immunodeficiency virus type 1 protease. Phytother Res 16: 422-426 https://doi.org/10.1002/ptr.919
  41. Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice-Evans C (1999) Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic Biol Med 26: 1231-1237 https://doi.org/10.1016/S0891-5849(98)00315-3
  42. Sato M, Ramarathnam N, Suzuki Y, Ohkubo T, Takeuchi M, Ochi H (1996) Varietal differences in the phenolic content and superoxide radical scavenging potential of wines from different sources. J Agric Food Chem 44: 37-41 https://doi.org/10.1021/jf950190a
  43. Seeram NP (2008) Berry fruits: compositional elements, biochemical activities, and the impact of their intake on human health, performance, and disease. J Agric Food Chem 56: 627-629 https://doi.org/10.1021/jf071988k
  44. Seeram NP, Adams LS, Zhang Y, Lee R, Sand D, Scheuller HS, Heber D (2006) Blackberry, black raspberry, blueberry, cranberry, red raspberry, and strawberry extracts inhibit growth and stimulate apoptosis of human cancer cells in vitro. J Agric Food Chem 54: 9329-9339 https://doi.org/10.1021/jf061750g
  45. Sellappan S, Akoh CC, Krewer G (2002) Phenolic compounds and antioxidant capacity of Georgia-grown blueberries and blackberries. J Agric Food Chem 50: 2432-2438 https://doi.org/10.1021/jf011097r
  46. Seol GH, Kang P, Lee HS, Seol GH (2016) Antioxidant activity of linalool in patients with carpal tunnel syndrome. BMC Neurol. doi: 10.1186/s12883-016-0541-3
  47. Song SC, Song CK, Kim JS (2014) Vegetation and Habitat Environment of Sageretia thea in Jeju Island. Korean J Med Crop Sci 22: 301-305 https://doi.org/10.7783/KJMCS.2014.22.4.301
  48. Velika B, Kron I (2012) Antioxidant properties of benzoic acid derivatives against superoxide radical. Free Radicals and Antioxidants 2: 62-67
  49. Wang M, Li J, Rangarajan M, Shao Y, LaVoie EJ, Huang TC, Ho CT (1998) Antioxidative phenolic compounds from sage (Salvia officinalis). J Agric Food Chem 46: 4869-4873 https://doi.org/10.1021/jf980614b
  50. Wang SY, Jiao H (2000) Scavenging capacity of berry crops on superoxide radicals, hydrogen peroxide, hydroxyl radicals, and singlet oxygen. J Agric Food Chem 48: 5677-5684 https://doi.org/10.1021/jf000766i
  51. Wang Z, Ma L, Zhang X, Xu L, Cao J, Jiang W (2015) The effect of exogenous salicylic acid on antioxidant activity, bioactive compounds and antioxidant system in apricot fruit. Scientia Hortic 181: 113-120 https://doi.org/10.1016/j.scienta.2014.10.055
  52. Yang DP, Ji HF, Tang GY, Ren W, Zhang HY (2007) How many drugs are catecholics Molecules 12: 878-884 https://doi.org/10.3390/12040878
  53. Yu X, Zhao M, Liu F, Zeng S, Hu J (2013) Identification of 2,3-dihydro-3,5-dihydroxy-6-methyl-4H-pyran-4-one as a strong antioxidant in glucose-histidine Maillard reaction products. Food Res Int 51: 397-403 https://doi.org/10.1016/j.foodres.2012.12.044

Cited by

  1. Anti-Oxidative and Anti-Diabetic Effects of Butanol Faction from Yangha (Zingiber mioga ROSC) vol.34, pp.1, 2018, https://doi.org/10.9724/kfcs.2018.34.1.105
  2. Assessment of Nutritional Components, Antioxidant Contents and Physiological Activity of Purple Corn Husk and Cob Extracts vol.33, pp.6, 2018, https://doi.org/10.13103/JFHS.2018.33.6.500
  3. 댕댕이나무 열매 추출물이 지방전구세포와 마우스 지방유래줄기세포의 분화 및 지방 생성 억제에 미치는 영향 vol.52, pp.1, 2017, https://doi.org/10.4163/jnh.2019.52.1.17
  4. 쌍별귀뚜라미 단백가수분해물의 제조 및 항산화 활성 vol.51, pp.5, 2019, https://doi.org/10.9721/kjfst.2019.51.5.473
  5. 마키베리 추출물의 화장품 신규 원료로서의 가능성 vol.62, pp.4, 2017, https://doi.org/10.3839/jabc.2019.047
  6. 상동나무 지상부의 항혈전 활성 vol.30, pp.5, 2017, https://doi.org/10.5352/jls.2020.30.5.443
  7. In vitro macrophage activation by Sageretia thea fruits through TLR2/TLR4-dependent activation of MAPK, NF-κB and PI3K/AKT signalling in RAW264.7 cells vol.32, pp.1, 2017, https://doi.org/10.1080/09540105.2020.1857339
  8. Analysis of the Effective Components and Antioxidant Activity of Korean Black Currant (Ribes nigrum L.) Extracts vol.31, pp.2, 2017, https://doi.org/10.17495/easdl.2021.4.31.2.114