References
- Ahemad M, Malik A (2012) Bioaccumulation of heavy metals by zinc resistant bacterial isolated from agricultural soils irrigated with wastewater. Bacteriol J 2: 12-21 https://doi.org/10.3923/bj.2012.12.21
- Diaz-Ravina, Baath E (1996) Development of metal tolerance in soil bacterial communities exposed to experimentally increased metal levels. Appl Environ Microbiol 62: 2970-2977
- Diaz-Ravina M, Baath E (2001) Response of bacterial communities preexposed to different metals and reinoculated in an unpolluted soil. Soil Biology Biochemistry 33: 241-248 https://doi.org/10.1016/S0038-0717(00)00136-X
- Duxbury T, Bicknell B (1983) Metal-tolerant bacterial populations from natural and metal-polluted soils. Soil Biol Biochem 15: 243-250 https://doi.org/10.1016/0038-0717(83)90066-4
- Gad AS, Attia M, Ahmed HA (2010) Heavy metals bio-remediation by immobilized Saccharomyces cerevisiae and Opuntia indica waste. J American Sci 6: 79-87
- Gaur N, Flora G, Yadav M, Tiwari A (2014) A review with recent advancements on bioremediation-based abolition of heavy metals. Environ Sci Proceses Impacts 16: 180-193 https://doi.org/10.1039/C3EM00491K
- Giaginis C, Gatzidou E, Theocharis S (2006) DNA repair systems at targets of cadmium toxicity. Toxicol Appl Pharmacol 213: 282-290 https://doi.org/10.1016/j.taap.2006.03.008
- Jin YH, Clark AB, Slebos RJ, Al-Rafai H, Taylor JA, Kundel TA, Resnick MA, Gordenin DA (2003) Cadmium is a mutagen that acts by inhibiting mismatch repair. Nat Gen 34: 326-329 https://doi.org/10.1038/ng1172
- Lee S, Kang BS (2005) Phytochelatin is not a primary factor in determining copper tolerance. J Plant Biol 48: 32-38 https://doi.org/10.1007/BF03030562
- Rehman A, Farooq H, Hasnain S (2008) Biosorption of copper by yeast, Loddermyces elongisporus, isolated from industrial effluents: its potential use in wastewater treatment. J Basic Microbiol 48: 195-201 https://doi.org/10.1002/jobm.200700324
- Ruta L, Paraschivescu C, Matache M, Avramescu S, Farcassanu IC (2010) Removing heavy metals from synthetic effluents using “kamikaze” Saccharomyces cerevisiae cells. App Microbiol Biotechnol 85: 763-771 https://doi.org/10.1007/s00253-009-2266-3
- Sakulsak N (2012) Metallothionein: An overview on its metal homeostatic regulation in mammals. Int J Morphol 30: 1007-1012 https://doi.org/10.4067/S0717-95022012000300039
- Soares EV, Soares HM (2012) Bioremediation of industrial effluents containing heavy metals using brewing cells of Saccharomyces cerevisiae as a green technology: a review. Environ Sci Pollut Res Int 19: 1066-1083 https://doi.org/10.1007/s11356-011-0671-5
- Villegas LB, Amoroso MJ, deFigueroa LIC (2005) Copper tolerant yeasts isolated from polluted area of Argentina. J Basic Microbiol 45: 381-391 https://doi.org/10.1002/jobm.200510569
- Yadav SK (2010) Heavy metals toxicity in plants: An overview on the role of glutathione and phytochelatins in heavy metals stress tolerance of plants. South African J Bot 76:167-179 https://doi.org/10.1016/j.sajb.2009.10.007
- Zafar S, Aquil F, Ahmad I (2007) Metal tolerance and biosorption potential of filamentous fungi isolated from metal contaminated agricultural soil. Bioresource Technology 98: 2557-2561 https://doi.org/10.1016/j.biortech.2006.09.051