References
- Baltimore D. 1971. Viral genetic systems. Trans. N. Y. Acad. Sci. 33: 327-332. https://doi.org/10.1111/j.2164-0947.1971.tb02600.x
- Green KY. 2007. Caliciviridae: the noroviruses, pp. 949-980. In Knipe DM and Howley PM (eds.), Fields virology, 5th ed., vol. 1. Lippincott, Williams & Wilkins, Philadelphia, PA.
- Kapikian AZ. 2000. The discovery of the 27-nm Norwalk virus: an historic perspective. J. Infect. Dis. 181 Suppl 2: S295-302. https://doi.org/10.1086/315584
- Kapikian AZ, Wyatt RG, Dolin R, Thornhill TS, Kalica AR, Chanock RM. 1972. Visualization by immune electron microscopy of a 27-nm particle associated with acute infectious nonbacterial gastroenteritis. J. Virol. 10: 1075-1081.
- Prasad BV, Hardy ME, Dokland T, Bella J, Rossmann MG, Estes MK. 1999. X-ray crystallographic structure of the Norwalk virus capsid. Science 286: 287-290. https://doi.org/10.1126/science.286.5438.287
- Ahmed SM, Hall AJ, Robinson AE, Verhoef L, Premkumar P, Parashar UD, et al. 2014. Global prevalence of norovirus in cases of gastroenteritis: a systematic review and meta-analysis. Lancet. Infect. Dis. 14: 725-730. https://doi.org/10.1016/S1473-3099(14)70767-4
- Teunis PFM, Moe CL, Liu P, Miller SE, Lindesmith L, Baric RS, et al. 2008. Norwalk virus: How infectious is it? J. Med. Virol. 80: 1468-1476. https://doi.org/10.1002/jmv.21237
- Atmar RL, Opekun AR, Gilger MA, Estes MK, Crawford SE, Neill FH, et al. 2008. Norwalk virus shedding after experimental human infection. Emerg. Infect. Dis. 14: 1553-1557. https://doi.org/10.3201/eid1410.080117
- Esposito S, Ascolese B, Senatore L, Codeca C. 2014. Pediatric norovirus infection. Eur. J. Clin. Microbiol. Infect. Dis. 33: 285-290. https://doi.org/10.1007/s10096-013-1967-9
- Patel MM, Widdowson MA, Glass RI, Akazawa K, Vinje J, Parashar UD. 2008. Systematic literature review of role of noroviruses in sporadic gastroenteritis. Emerg. Infect. Dis. 14: 1224-1231. https://doi.org/10.3201/eid1408.071114
- Newman KL, Moe CL, Kirby AE, Flanders WD, Parkos CA, Leon JS. 2016. Norovirus in symptomatic and asymptomatic individuals: cytokines and viral shedding. Clin. Exp. Immunol. 184: 347-357. https://doi.org/10.1111/cei.12772
- Lee RM, Lessler J, Lee RA, Rudolph KE, Reich NG, Perl TM, Cummings DA. 2013. Incubation periods of viral gastroenteritis: a systematic review. BMC Infect. Dis. 13: 446. https://doi.org/10.1186/1471-2334-13-446
- Bok K, Green KY. 2012. Norovirus gastroenteritis in immunocompromised patients. N. Engl. J. Med. 367: 2126-2132. https://doi.org/10.1056/NEJMra1207742
- Lopman BA, Adak GK, Reacher MH, Brown DW. 2003. Two epidemiologic patterns of norovirus outbreaks: surveillance in England and wales, 1992-2000. Emerg. Infect. Dis. 9: 71-77. https://doi.org/10.3201/eid0901.020175
- Yen C, Wikswo ME, Lopman BA, Vinje J, Parashar UD, Hall AJ. 2011. Impact of an emergent norovirus variant in 2009 on norovirus outbreak activity in the United States. Clin. Infect. Dis. 53: 568-571. https://doi.org/10.1093/cid/cir478
- de Wit MA, Koopmans MP, van Duynhoven YT. 2003. Risk factors for norovirus, Sapporo-like virus, and group A rotavirus gastroenteritis. Emerg. Infect. Dis. 9: 1563-1570. https://doi.org/10.3201/eid0912.020076
- Phillips G, Tam CC, Rodrigues LC, Lopman B. 2011. Risk factors for symptomatic and asymptomatic norovirus infection in the community. Epidemiol. Infect. 139: 1676-1686. https://doi.org/10.1017/S0950268810002839
- Asanaka M, Atmar RL, Ruvolo V, Crawford SE, Neill FH, Estes MK. 2005. Replication and packaging of Norwalk virus RNA in cultured mammalian cells. Proc. Natl. Acad. Sci. USA 102: 10327-10332. https://doi.org/10.1073/pnas.0408529102
- Katayama K, Hansman GS, Oka T, Ogawa S, Takeda N. 2006. Investigation of norovirus replication in a human cell line. Arch. Virol. 151: 1291-1308. https://doi.org/10.1007/s00705-005-0720-9
- Lambden PR, Caul EO, Ashley CR, Clarke IN. 1993. Sequence and genome organization of a human small round-structured (Norwalk- like) virus. Science 259: 516-519. https://doi.org/10.1126/science.8380940
- Wyatt RG, Dolin R, Blacklow NR, DuPont HL, Buscho RF, Thornhill TS, et al. 1974. Comparison of three agents of acute infectious nonbacterial gastroenteritis by cross-challenge in volunteers. J. Infect. Dis. 129: 709-714. https://doi.org/10.1093/infdis/129.6.709
- Parrino TA, Schreiber DS, Trier JS, Kapikian AZ, Blacklow NR. 1977. Clinical immunity in acute gastroenteritis caused by norwalk agent. N. Engl. J. Med. 297: 86-89. https://doi.org/10.1056/NEJM197707142970204
- Johnson PC, Mathewson JJ, DuPont HL, Greenberg HB. 1990. Multiple-challenge study of host susceptibility to norwalk gastroenteritis in US adults. J. Infect. Dis. 161: 18-21. https://doi.org/10.1093/infdis/161.1.18
- Agus SG, Dolin R, Wyatt RG, Tousimis AJ, Northrup RS. 1973. Acute infectious nonbacterial gastroenteritis: Intestinal histopathology: histologic and enzymatic alterations during illness produced by the norwalk agent in man. Ann. Int. Med. 79: 18-25. https://doi.org/10.7326/0003-4819-79-1-18
- Jean J, Morales-Rayas R, Anoman MN, Lamhoujeb S. 2011. Inactivation of hepatitis A virus and norovirus surrogate in suspension and on food-contact surfaces using pulsed UV light (pulsed light inactivation of food-borne viruses). Food Microbiol. 28: 568-572. https://doi.org/10.1016/j.fm.2010.11.012
- Park GW, Linden KG, Sobsey MD. 2011. Inactivation of murine norovirus, feline calicivirus and echovirus 12 as surrogates for human norovirus (NoV) and coliphage (F+) MS2 by ultraviolet light (254 nm) and the effect of cell association on UV inactivation. Lett. Appl. Microbiol. 52: 162-167. https://doi.org/10.1111/j.1472-765X.2010.02982.x
- Duizer E, Schwab KJ, Neill FH, Atmar RL, Koopmans MP, Estes MK. 2004. Laboratory efforts to cultivate noroviruses. J. Gen. Virol. 85: 79-87. https://doi.org/10.1099/vir.0.19478-0
- Lay MK, Atmar RL, Guix S, Bharadwaj U, He H, Neill FH, et al. 2010. Norwalk virus does not replicate in human macrophages or dendritic cells derived from the peripheral blood of susceptible humans. Virology 406: 1-11. https://doi.org/10.1016/j.virol.2010.07.001
- Herbst-Kralovetz MM, Radtke AL, Lay MK, Hjelm BE, Bolick AN, Sarker SS, et al. 2013. Lack of norovirus replication and histoblood group antigen expression in 3-dimensional intestinal epithelial cells. Emerg. Infect. Dis. 19: 431-438. https://doi.org/10.3201/eid1903.121029
- Papafragkou E, Hewitt J, Park GW, Greening G, Vinje J. 2013. Challenges of culturing human norovirus in three-dimensional organoid intestinal cell culture models. PLoS One 8: e63485. https://doi.org/10.1371/journal.pone.0063485
- Cubitt WD, Barrett ADT. 1984. Propagation of human candidate calicivirus in cell culture. J. Gen. Virol. 65: 1123-1126. https://doi.org/10.1099/0022-1317-65-6-1123
- Gauthier R, Harnois C, Drolet JF, Reed JC, Vezina A, Vachon PH. 2001. Human intestinal epithelial cell survival: differentiation state-specific control mechanisms. Am. J. Physiol Cell Physiol. 280: C1540-1554. https://doi.org/10.1152/ajpcell.2001.280.6.C1540
- Goke M, Kanai M, Podolsky DK. 1998. Intestinal fibroblasts regulate intestinal epithelial cell proliferation via hepatocyte growth factor. Am. J. Physiol. 274: G809-818.
- Hughes JH. 1993. Physical and chemical methods for enhancing rapid detection of viruses and other agents. Clin. Microbiol. Rev. 6: 150-175. https://doi.org/10.1128/CMR.6.2.150
- Joshi SS, Jackson JD, Sharp JG. 1985. Differentiation inducing effects of butyrate and DMSO on human intestinal tumor cell lines in culture. Cancer. Detect. Prev. 8: 237-245.
- Lamartina S, Roscilli G, Rinaudo D, Delmastro P, Toniatti C. 1998. Lipofection of purified adeno-associated virus Rep68 protein: toward a chromosome-targeting nonviral particle. J. Virol. 72: 7653-7658.
- Maitreyi RS, Broor S, Kabra SK, Ghosh M, Seth P, Dar L, Prasad AK. 2000. Rapid detection of respiratory viruses by centrifugation enhanced cultures from children with acute lower respiratory tract infections. J. Clin. Virol. 16: 41-47. https://doi.org/10.1016/S1386-6532(99)00075-X
- Pinto RM, Diez JM, Bosch A. 1994. Use of the colonic carcinoma cell line CaCo-2 for in vivo amplification and detection of enteric viruses. J. Med. Virol. 44: 310-315. https://doi.org/10.1002/jmv.1890440317
- Quaroni A, Tian JQ, Goke M, Podolsky DK. 1999. Glucocorticoids have pleiotropic effects on small intestinal crypt cells. Am. J. Physiol. 277: G1027-1040.
- Seno M, Takao S, Fukuda S, Kanamoto Y. 1991. Enhanced Isolation of influenza virus in conventional plate cell cultures by using low-speed centrifugation from clinical specimens. Am. J. Clin. Pathol. 95: 765-768. https://doi.org/10.1093/ajcp/95.6.765
- Svensson L, Finlay BB, Bass D, von Bonsdorff CH, Greenberg HB. 1991. Symmetric infection of rotavirus on polarized human intestinal epithelial (Caco-2) cells. J. Virol. 65: 4190-4197.
- Wobus CE, Karst SM, Thackray LB, Chang K-O, Sosnovtsev SV, Belliot G, et al. 2004. Replication of norovirus in cell culture reveals a tropism for dendritic cells and macrophages. PLOS Biol. 2: e432. https://doi.org/10.1371/journal.pbio.0020432
- Wobus CE, Thackray LB, Virgin HW. 2006. Murine norovirus: a model system to study norovirus biology and pathogenesis. J. Virol. 80: 5104-5112. https://doi.org/10.1128/JVI.02346-05
- Elftman MD, Gonzalez-Hernandez MB, Kamada N, Perkins C, Henderson KS, Nunez G, Wobus CE. 2013. Multiple effects of dendritic cell depletion on murine norovirus infection. J. Gen. Virol. 94: 1761-1768. https://doi.org/10.1099/vir.0.052134-0
- Gonzalez-Hernandez MB, Liu T, Payne HC, Stencel-Baerenwald JE, Ikizler M, Yagita H, et al. 2014. Efficient norovirus and reovirus replication in the mouse intestine requires microfold (M) cells. J. Virol. 88: 6934-6943. https://doi.org/10.1128/JVI.00204-14
- Gonzalez-Hernandez MB, Liu T, Blanco LP, Auble H, Payne HC, Wobus CE. 2013. Murine norovirus transcytosis across an in vitro polarized murine intestinal epithelial monolayer is mediated by M-like cells. J. Virol. 87: 12685-12693. https://doi.org/10.1128/JVI.02378-13
- Carterson AJ, Honer zu Bentrup K, Ott CM, Clarke MS, Pierson DL, Vanderburg CR, et al. 2005. A549 Lung epithelial cells grown as three-dimensional aggregates: Alternative tissue culture model for pseudomonas aeruginosa pathogenesis. Infect. Imm. 73: 1129-1140. https://doi.org/10.1128/IAI.73.2.1129-1140.2005
- Noel G, Baetz NW, Staab JF, Donowitz M, Kovbasnjuk O, Pasetti MF, Zachos NC. 2017. A primary human macrophage-enteroid co-culture model to investigate mucosal gut physiology and host-pathogen interactions. Scient. Rep. 7: 45270. https://doi.org/10.1038/srep45270
- Honer zu Bentrup K, Ramamurthy R, Ott CM, Emami K, Nelman-Gonzalez M, Wilson JW, et al. 2006. Three-dimensional organotypic models of human colonic epithelium to study the early stages of enteric salmonellosis. Microbes Infect. 8: 1813-1825. https://doi.org/10.1016/j.micinf.2006.02.020
- LaMarca HL, Ott CM, Honer Zu Bentrup K, Leblanc CL, Pierson DL, Nelson AB, et al. 2005. Three-dimensional growth of extravillous cytotrophoblasts promotes differentiation and invasion. Placenta 26: 709-720. https://doi.org/10.1016/j.placenta.2004.11.003
- Long JP, Hughes JH. 2001. Epstein-barr virus latently infected cells are selectively deleted in simulated-microgravity cultures. In Vitro Cell Dev. Biol. Anim. 37: 223-230.
- Nickerson CA, Goodwin TJ, Terlonge J, Ott CM, Buchanan KL, Uicker WC, et al. 2001. Three-dimensional tissue assemblies: novel models for the study of salmonella enterica serovar typhimurium pathogenesis. Infect. Imm. 69: 7106-7120. https://doi.org/10.1128/IAI.69.11.7106-7120.2001
- Zhang S. 2004. Beyond the Petri dish. Nat. Biotechnol. 22: 151-152. https://doi.org/10.1038/nbt0204-151
- Nickerson CA, Richter EG, Ott CM. 2007. Studying host-pathogen interactions in 3-D: organotypic models for infectious disease and drug development. J. Neuroimm. Pharmacol. 2: 26-31. https://doi.org/10.1007/s11481-006-9047-x
- Straub TM, Honer zu Bentrup K, Coghlan PO, Dohnalkova A, Mayer BK, Bartholomew RA, et al. 2007. In vitro cell culture infectivity assay for human noroviruses. Emerg. Infect. Dis. 13: 396-403. https://doi.org/10.3201/eid1303.060549
- Straub TM, Bartholomew RA, Valdez CO, Valentine NB, Dohnalkova A, Ozanich RM, et al. 2011. Human norovirus infection of caco-2 cells grown as a 3-dimensional tissue structure. J. Water Health. 9: 225-240. https://doi.org/10.2166/wh.2010.106
- Takanashi S, Saif LJ, Hughes JH, Meulia T, Jung K, Scheuer KA, Wang Q. 2014. Failure of propagation of human norovirus in intestinal epithelial cells with microvilli grown in three-dimensional cultures. Arch Virol. 159: 257-266. https://doi.org/10.1007/s00705-013-1806-4
- Mumphrey SM, Changotra H, Moore TN, Heimann-Nichols ER, Wobus CE, Reilly MJ, et al. 2007. Murine norovirus 1 infection is associated with histopathological changes in immunocompetent hosts, but clinical disease is prevented by STAT1-dependent interferon responses. J. Virol. 81: 3251-3263. https://doi.org/10.1128/JVI.02096-06
- Basic M, Keubler LM, Buettner M, Achard M, Breves G, Schroder B, et al. 2014. Norovirus triggered microbiota-driven mucosal inflammation in interleukin 10-deficient mice. Inflamm. Bowel Dis. 20: 431-443. https://doi.org/10.1097/01.MIB.0000441346.86827.ed
- Zhu S, Regev D, Watanabe M, Hickman D, Moussatche N, Jesus DM, et al. 2013. Identification of immune and viral correlates of norovirus protective immunity through comparative study of intra-cluster norovirus strains. PLoS Pathog. 9: e1003592. https://doi.org/10.1371/journal.ppat.1003592
- Bok K, Parra GI, Mitra T, Abente E, Shaver CK, Boon D, et al. 2011. Chimpanzees as an animal model for human norovirus infection and vaccine development. Proc. Natl. Acad. Sci. USA 108:325-330. https://doi.org/10.1073/pnas.1014577107
- Jones MK, Watanabe M, Zhu S, Graves CL, Keyes LR, Grau KR, et al. 2014. Enteric bacteria promote human and mouse norovirus infection of B cells. Science 346: 755-759. https://doi.org/10.1126/science.1257147
- Jones MK, Grau KR, Costantini V, Kolawole AO, de Graaf M, Freiden P, et al. 2015. Human norovirus culture in B cells. Nat. Protoc. 10: 1939-1947. https://doi.org/10.1038/nprot.2015.121
- Kuss SK, Best GT, Etheredge CA, Pruijssers AJ, Frierson JM, Hooper LV, et al. 2011. Intestinal microbiota promote enteric virus replication and systemic pathogenesis. Science 334: 249-252. https://doi.org/10.1126/science.1211057
- Kane M, Case LK, Kopaskie K, Kozlova A, MacDearmid C, Chervonsky AV, Golovkina TV. 2011. Successful transmission of a retrovirus depends on the commensal microbiota. Science 334: 245-249. https://doi.org/10.1126/science.1210718
- Robinson CM, Jesudhasan PR, Pfeiffer JK. 2014. Bacterial lipopolysaccharide binding enhances virion stability and promotes environmental fitness of an enteric virus. Cell. Host. Microbe. 15: 36-46. https://doi.org/10.1016/j.chom.2013.12.004
- Baldridge MT, Nice TJ, McCune BT, Yokoyama CC, Kambal A, Wheadon M, et al. 2015. Commensal microbes and interferonlambda determine persistence of enteric murine norovirus infection. Science 347: 266-269. https://doi.org/10.1126/science.1258025
- Ha S, Choi IS, Choi C, Myoung J. 2016. Infection models of human norovirus: challenges and recent progress. Arch. Virol. 161: 779-788. https://doi.org/10.1007/s00705-016-2748-4
- Grimprel E, Rodrigo C, Desselberger U. 2008. Rotavirus disease: impact of coinfections. Pediat. Infect. Dis. J. 27: S3-S10. https://doi.org/10.1097/INF.0b013e31815eedfa
- Wilks J, Beilinson H, Golovkina TV. 2013. Dual role of commensal bacteria in viral infections. Immunol. Rev. 255: 10.1111/imr.12097.
- Miura T, Sano D, Suenaga A, Yoshimura T, Fuzawa M, Nakagomi T, et al. 2013. Histo-blood group antigen-like substances of human enteric bacteria as specific adsorbents for human noroviruses. J. Virol. 87: 9441-9451. https://doi.org/10.1128/JVI.01060-13
- Marionneau S, Ruvoen N, Le Moullac-Vaidye B, Clement M, Cailleau-Thomas A, Ruiz-Palacois G, et al. 2002. Norwalk virus binds to histo-blood group antigens present on gastroduodenal epithelial cells of secretor individuals. Gastroenterology 122: 1967-1977. https://doi.org/10.1053/gast.2002.33661
- Tan M, Jiang X. 2014. Histo-blood group antigens: a common niche for norovirus and rotavirus. Expert. Rev. Mol. Med. 16: e5. https://doi.org/10.1017/erm.2014.2
- Huang P, Farkas T, Marionneau S, Zhong W, Ruvoen-Clouet N, Morrow AL, et al. 2003. Noroviruses bind to human ABO, Lewis, secretor histo-blood group antigens: identification of 4 distinct strain-specific patterns. J. Infect. Dis. 188: 19-31. https://doi.org/10.1086/375742
- Sestak K. 2014. Role of histo-blood group antigens in primate enteric calicivirus infections. World J. Virol. 3: 18-21. https://doi.org/10.5501/wjv.v3.i3.18
- Hutson AM, Atmar RL, Graham DY, Estes MK. 2002. Norwalk virus infection and disease is associated with ABO histo-blood group type. J. Infect. Dis. 185: 1335-1337. https://doi.org/10.1086/339883
- Hutson AM, Airaud F, LePendu J, Estes MK, Atmar RL. 2005. Norwalk virus infection associates with secretor status genotyped from sera. J. Med. Virol. 77: 116-120. https://doi.org/10.1002/jmv.20423
- Karst SM. 2010. Pathogenesis of noroviruses, emerging RNA viruses. Viruses 2: 748-781. https://doi.org/10.3390/v2030748
- Lindesmith L, Moe C, Marionneau S, Ruvoen N, Jiang X, Lindblad L, et al. 2003. Human susceptibility and resistance to Norwalk virus infection. Nat. Med. 9: 548-553. https://doi.org/10.1038/nm860
- Marionneau S, Airaud F, Bovin NV, Le Pendu J, Ruvoen-Clouet N. 2005. Influence of the combined ABO, FUT2, and FUT3 polymorphism on susceptibility to Norwalk virus attachment. J. Infect. Dis. 192: 1071-1077. https://doi.org/10.1086/432546
- Zhang X-F, Tan M, Chhabra M, Dai Y-C, Meller J, Jiang X. 2013. Inhibition of histo-blood group antigen binding as a novel strategy to block norovirus infections. PLoS One 8: e69379. https://doi.org/10.1371/journal.pone.0069379
- Almagro-Moreno S, Boyd EF. 2010. Bacterial catabolism of nonulosonic (sialic) acid and fitness in the gut. Gut. Microbes. 1: 45-50. https://doi.org/10.4161/gmic.1.1.10386
- Bally M, Rydell GE, Zahn R, Nasir W, Eggeling C, Breimer ME, et al. 2012. Norovirus GII.4 virus-like particles recognize galactosylceramides in domains of planar supported lipid bilayers. Angew. Chem. Int. Ed. Engl. 51: 12020-12024. https://doi.org/10.1002/anie.201205972
- Rydell GE, Nilsson J, Rodriguez-Diaz J, Ruvoen-Clouet N, Svensson L, Le Pendu J, Larson G. 2009. Human noroviruses recognize sialyl Lewis x neoglycoprotein. Glycobiology 19: 309-320. https://doi.org/10.1093/glycob/cwn139
- Tamura M, Natori K, Kobayashi M, Miyamura T, Takeda N. 2004. Genogroup II noroviruses efficiently bind to heparan sulfate proteoglycan associated with the cellular membrane. J. Virol. 78: 3817-3826. https://doi.org/10.1128/JVI.78.8.3817-3826.2004
- Orchard RC, Wilen CB, Doench JG, Baldridge MT, McCune BT, Lee Y-CJ, et al. 2016. Discovery of a proteinaceous cellular receptor for a norovirus. Science 353: 933-936. https://doi.org/10.1126/science.aaf1220
- Lei S, Samuel H, Twitchell E, Bui T, Ramesh A, Wen K, et al. 2016. Enterobacter cloacae inhibits human norovirus infectivity in gnotobiotic pigs. Scientif. Rep. 6: 25017. https://doi.org/10.1038/srep25017
- Cheetham S, Souza M, Meulia T, Grimes S, Han MG, Saif LJ. 2006. Pathogenesis of a genogroup ii human norovirus in gnotobiotic pigs. J. Virol. 80: 10372-10381. https://doi.org/10.1128/JVI.00809-06
-
Jung K, Wang Q, Kim Y, Scheuer K, Zhang Z, Shen Q, et al. 2012. The effects of simvastatin or interferon-
${\alpha}$ on infectivity of human norovirus using a gnotobiotic pig model for the study of Antivirals. PLoS One 7: e41619. https://doi.org/10.1371/journal.pone.0041619 - Bui T, Kocher J, Li Y, Wen K, Li G, Liu F, et al. 2013. Median infectious dose of human norovirus GII.4 in gnotobiotic pigs is decreased by simvastatin treatment and increased by age. J. Gen. Virol. 94: 2005-2016. https://doi.org/10.1099/vir.0.054080-0
- Brown JR, Gilmour K, Breuer J. 2016. Norovirus Infections Occur in B-Cell-Deficient Patients. Clin. Infect. Dis. 62: 1136-1138. https://doi.org/10.1093/cid/ciw060
- Green KY. 2016. Editorial commentary: noroviruses and B cells. Clin. Infect. Dis. 62: 1139-1140. https://doi.org/10.1093/cid/ciw063
- Saxena K, Blutt SE, Ettayebi K, Zeng XL, Broughman JR, Crawford SE, et al. 2015. Human intestinal enteroids: a new model to study human rotavirus infection, host restriction, and pathophysiology. J. Virol. 90: 43-56.
- Ettayebi K, Crawford SE, Murakami K, Broughman JR, Karandikar U, Tenge VR, et al. 2016. Replication of human noroviruses in stem cell-derived human enteroids. Science 353: 1387-1393. https://doi.org/10.1126/science.aaf5211
- Weber F, Wagner V, Rasmussen SB, Hartmann R, Paludan SR. 2006. Double-stranded RNA is produced by positive-strand RNA viruses and DNA viruses but not in detectable amounts by negative-strand RNA viruses. J. Virol. 80: 5059-5064. https://doi.org/10.1128/JVI.80.10.5059-5064.2006
- Monaghan P, Simpson J, Murphy C, Durand S, Quan M, Alexandersen S. 2005. Use of confocal immunofluorescence microscopy to localize viral nonstructural proteins and potential sites of replication in pigs experimentally infected with foot-andmouth disease virus. J. Virol. 79: 6410-6418. https://doi.org/10.1128/JVI.79.10.6410-6418.2005
- Paddock SW. 1999. Confocal Microscopy: Methods and Protocols, vol. 122, Humana Press, Totowa (Meth Mol Biol).
- Hofmann AF. 2007. Biliary secretion and excretion in health and disease: current concepts. Ann. Hepatol. 6: 15-27.
- Hofmann AF. 1977. Enterohepatic circulation of bile acids and biliary lipid secretion. Minerva Med. 68: 3011-3017.
- Ruvoen-Clouet N, Belliot G, Le Pendu J. 2013. Noroviruses and histo-blood groups: the impact of common host genetic polymorphisms on virus transmission and evolution. Rev. Med. Virol. 23: 355-366. https://doi.org/10.1002/rmv.1757
-
Thorven M, Grahn A, Hedlund K-O, Johansson H, Wahlfrid C, Larson G, Svensson L. 2005. A homozygous nonsense mutation (
$428G{\rightarrow}A$ ) in the human secretor (FUT2) gene provides resistance to symptomatic norovirus (GGII) infections. J. Virol. 79: 15351-15355. https://doi.org/10.1128/JVI.79.24.15351-15355.2005 - Kelly RJ, Rouquier S, Giorgi D, Lennon GG, Lowe JB. 1995. Sequence and expression of a candidate for the human Secretor blood group alpha(1,2)fucosyltransferase gene (FUT2). Homozygosity for an enzyme-inactivating nonsense mutation commonly correlates with the non-secretor phenotype. J. Biol. Chem. 270: 4640-4649. https://doi.org/10.1074/jbc.270.9.4640