• Title/Summary/Keyword: cell culture model

Search Result 383, Processing Time 0.027 seconds

Studies on the Air-Liquid Interface Culture as an Experimental Model for Physiology and Pharmacology of Tracheal Epithelial Cells (기관(氣管) 상피세포 생리 및 약리 실험모델로서의 공기-액체 접면 일차배양법 연구)

  • 이충재;이재흔;석정호;허강민
    • Biomolecules & Therapeutics
    • /
    • v.10 no.4
    • /
    • pp.281-286
    • /
    • 2002
  • In this study, we intended to get a preliminary data for establishing rat tracheal surface epithelial(RTSE) cell culture system as an experimental model for physiology and pharmacology of tracheal epithelial cells. Primary culture on the membrane support and application of the air-liquid interface system at the level of cell layer were performed. The cell growth rate and mucin production rate were measured according to the days in culture. The results were as follows: this culture system was found to manifest mucocilliary differentiation of rat tracheal epithelial cells, the cells were confluent and the quantity of produced and released mucin was highest on culture day 9, the mucin was mainly released to the apical side and tbe free $^3{H}$-glucosamine which was not incorporated to process of synthesis of mucin was left on the basolateral side. Taken together, we suggest that air-liquid interface culture system can be used as a substitute for immersion culture system and as an experimental model for in vivo mucus-hypersecretory diseases.

Kinetic Analysis of the Effect of Cell Density on Hybridoma Cell Growth in Batch Culture

  • Lee, Eun-Yeol
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.7 no.2
    • /
    • pp.117-120
    • /
    • 2002
  • The effect of cell density on cell growth was investigated in a suspension batch culture of hybridoma cells. The specific growth rate was found to increase with increasing initial cell density and then to decrease with further increases in initial cell density. In order to quantitatively describe the dependence of specific growth rate on cell density, a kinetic model is proposed, which satisfactorily represents the experimental data.

Bioreactor Operating Strategy in Scultellaria baicalensis G. Plant Cell Culture for the Production of Flavone Glycosides (Flavonoid 배당체 생산을 위한 Scutellaria baicalensis G. 식물 세포 배양에서 생물반응기 운전전략)

  • 최정우;조진만;이정건;이원홍;김익환;박영훈
    • KSBB Journal
    • /
    • v.13 no.3
    • /
    • pp.259-267
    • /
    • 1998
  • Optimal feeding strategies in bioreactor operation of Scutellaria baicalensis G. plant cell culture were investigated to maximize the production of flavone glycosides by using a structured kinetic model which can predict culture growth and flavone glycosides synthesis in a rigorous, quantitative manner. For the production of baicalin and wogonin-7-0-GA, the strategies for glucose feeding into Scutellaria baicalensis G. plant cell culture were proposed based on the model, which are a periodic fed-batch operation with maintenance of cell viability and of specific production rate respectively, and a perfusion operation with maintenance of specific production rate for baicalin and wogonin-7-0-GA. Simulation results showed that the highest volumetric concentration of flavone glycosides was obtained in a periodic fed-batch operation with maintenance of cell viability among all the suggested strategies. In the periodic fed-batch operations, the higher volumetric production of flavone glycosides was achieved compared with that in the perfusion operation. It can be concluded that a periodic fed-batch operation with maintenance of cell viability would be the optimal and practical operating strategy of Scutellaris baicalensis G. plant cell culture for the production of flavone glycosides.

  • PDF

Mathematical Modeling with Cell Morphology and Its Application to Fed-batch Culture in Cephalosporium Fermentation (Cephalosporium 발효시 균체의 형태학적 측면을 고려한 수학적 모델링 및 유가식 배양에의 응용)

  • 김의용;유영제
    • Microbiology and Biotechnology Letters
    • /
    • v.19 no.5
    • /
    • pp.521-535
    • /
    • 1991
  • A kinetic model incorporating cell morphology in cephalosporin C biosynthesis by Cephalosporium amemoniurn was developed. The double-substrate Double-substrate kinetic model was used to describe cell growth. Methionine controlled the rate of growth while glucose ultimately controlled the extent of growth. The changes in specific product formation rate were associated with morphologenesis, especially cell differentiation. To increase the productivity of cephalosporin C, the proposed model equations were applied to a fed-batch culture. The algorithm to optimize the fed-batch culture consists of two steps; cell growth was maximized in the growth phase and then cephalosporin C production was maximized in the production phase. The increase of about 33% in the cephalosporin C titre was obtained by the optimal feeding scheduling in comparison with that of batch culture.

  • PDF

A Structured Growth Model of Scutellaria baicalensis G. Plant Cell (Scutellaria baicalensis G. 식물 세포의 구조적 성장 모델)

  • 최정우;조진만;이정건;이원홍;김익환;박영훈
    • KSBB Journal
    • /
    • v.13 no.3
    • /
    • pp.251-258
    • /
    • 1998
  • A structured kinetic model is proposed to describe cell growth and secondary metabolite, flavone glycosides, synthesis in batch suspension culture of Scutellaria baicalensis G. The model has been developed by representing the physiological state of cell described as the activity and viability which can be estimated based on the culture fluorescence. In the model, three type of cells are considered; active-viable, nonactive-viable and dead cells. Viable cell weight could be determined based on the relative fluorescence intensity. The flavone glycosides could be produced by both active-viable and non-active viable cells with a different production rate. And the model includes the cell expansion due to glucose concentration and death phase which accounts for the release of intracellular secondary metabolite into medium. Dependent variables include substrate concentration(glucose), cell mass(dry cell weight and fresh cell weight), product concentration(flavone glycosides), activity and viability. Satisfactory agreement between the model and experimental data is obtained from shake flask culture of Scutellaria baicalensis G. The proposed model can predict the cell growth and flavone glycosides synthesis as well as intermediate materials.

  • PDF

Modeling of Typical Microbial Cell Growth in Batch Culture

  • Jianqiang Lin;Lee, Sang-Mok;Lee, Ho-Joon;Koo, Yoon-Mo
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.5 no.5
    • /
    • pp.382-385
    • /
    • 2000
  • A mathematical model was developed, based on the time dependent changes of the specific growth rate, for prediction of the typical microbial cell growth in batch cultures. This model could predict both the lag growth phase and the stationary growth phase of batch cultures, and it was tested with the batch growth of Trichoderma reesei and Lactobacillus delbrueckii.

  • PDF

Ovarian cell aggregate culture in teleost, marine medaka (Oryzias dancena): basic culture conditions and characterization

  • Jae Hoon, Choi;Seung Pyo Gong
    • Journal of Animal Reproduction and Biotechnology
    • /
    • v.39 no.1
    • /
    • pp.19-30
    • /
    • 2024
  • Background: Although an understanding of the proliferation and differentiation of fish female germline stem cells (GSCs) is very important, an appropriate threedimensional (3D) research model to study them is not well established. As a part of the development of stable 3D culture system for fish female GSCs, we conducted this study to establish a 3D aggregate culture system of ovarian cells in marine medaka, Oryzias dancena. Methods: Ovarian cells were separated by Percoll density gradient centrifugation and two different cell populations were cultured in suspension to form ovarian cell aggregates to find suitable cell populations for its formation. Ovarian cell aggregates formed from different cell populations were evaluated by histology and gene expression analyses. To evaluate the media supplements, ovarian cell aggregate culture was performed under different media conditions, and the morphology, viability, size, gene expression, histology, and E2 secretion of ovarian cell aggregates were analyzed. Results: Ovarian cell aggregates were able to be formed well under specific culture conditions that used ultra-low attachment 96 well plate, complete mESM2, and the cell populations from top to 50% layers after separation of ovarian cells. Moreover, they were able to maintain minimal ovarian function such as germ cell maintenance and E2 synthesis for a short period. Conclusions: We established basic conditions for the culture of O. dancena ovarian cell aggregates. Additional efforts will be required to further optimize the culture conditions so that the ovarian cell aggregates can retain the improved ovarian functions for a longer period of time.

In vitro Nasal Cell Culture Systems for Drug Transport Studies

  • Cho, Hyun-Jong;Termsarasab, Ubonvan;Kim, Jung-Sun;Kim, Dae-Duk
    • Journal of Pharmaceutical Investigation
    • /
    • v.40 no.6
    • /
    • pp.321-332
    • /
    • 2010
  • Growing interest in the nasal route as a drug delivery system calls for a reliable in vitro model which is crucial for efficiently evaluating drug transport through the nasal cells. Various in vitro cell culture systems has thus been developed to displace the ex vivo excised nasal tissue and in vivo animal models. Due to species difference, results from animal studies are not sufficient for estimating the drug absorption kinetics in humans. However, the difficulty in obtaining reliable human tissue source limits the use of primary culture of human nasal epithelial cells. This shortage of human nasal tissue has therefore prompted studies on the "passage" culture of nasal epithelial cells. A serially passaged primary human nasal epithelial cell monolayer system developed by the air-liquid interface (ALI) culture is known to promote the differentiation of cilia and mucin gene and maintain high TEER values. Recent studies on the in vitro nasal cell culture systems for drug transport studies are reviewed in this article.

GROWTH AND DIFFERENTIATION OF CONDUCTING AIRWAY EPITHELIAL CELLS IN CULTURE

  • Reen Wu;Zhao, Yu-Hua;Mary M. J. Chang
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 1996.04a
    • /
    • pp.80-104
    • /
    • 1996
  • The development of routine techniques for the isolation and in vitro maintenance of conducting airway epithelial cells in a differentiated state provides an ideal model to study the factors involved in the regulation of the expression of mucocilicary differentiation. Several key factors and conditions have been identified. These factors and conditions include the use of biphasic culture technique to achieve mucociliary differentiation and the use of such stimulators, the thickness of collagen gel substratum, the calcium level, and vitamin A, and such inhibitors, the growth factors EGF and insulin, and steroid hormones, for mucous cell differentiation. Using the defined culture medium, the life cycle of the mucous cell population in vitro was investigated. It was demonstrated that the majority of the mucous cell population in primary cultures is not involved in DNA replication. However, the mucous cell type is capable of self-renewal in culture and this reproduction is vitamin A dependent. furthermore, differentiation from non-mucous cell type to mucous cell type can be demonstrated by adding back a positive regulator such as vitamin A to the “starved” culture. Cell kinetics data suggest that vitamin A-dependent mucous cell differentiation in culture is a DNA replication-independent process and the process is inhibited by TGF-${\beta}$1.

  • PDF

Ammonium Ion Effects and Its In Situ Removal by Using Immobilized Adsorbent in Hybridoma Cell Culture (하이브리도마 세포배양에서 암모늄 이온의 영향 및 고정화 흡착제에 의한 암모늄 이온의 동시제거)

  • 정연호;이해익
    • KSBB Journal
    • /
    • v.11 no.3
    • /
    • pp.329-339
    • /
    • 1996
  • The effects of ammonium ion on cell growth kinetics, monoclonal antibody productivity, and cell metabolism of hybridoma cells were investigated. The mouse-mouse hybridoma cell line VlIIH-8 producing mouse IgG2a was used as a model system. Ammonium ion showed an inhibitory effect on cell growth and monoclonal antibody production. New immobilized adsorbents were developed for the reduction of the inhibitory effect of ammonium ion. The ammonium ion selective zeolite, Phillipsite-Gismondine was entrapped in calcium alginate bead or in dialysis membrane and applied to the hybridoma cell culture system for the in situ removal of ammonium ion from culture media. The effects of ammonium the both serum supplemented and serum free media on the cell growth were studied by applying immobilized adsorbents of calcium alginate bead type. The results demonstrated a substantial enhancement in cell growth. Applying immobilized adsorbents of dialysis membrane type to serum supplemented media also resulted in the stimulation of cell growth, cell viability and monoclonal antibody production.

  • PDF