Browse > Article
http://dx.doi.org/10.4014/mbl.1706.06001

Cell Culture Models of Human Norovirus: the End of the Beginning?  

Nguyen, Minh Tue (Korea Zoonosis Research Institute and Department of Bioactive Material Sciences, Chonbuk National University)
Park, Mi-Kyung (School of Food Science and Biotechnology, Kyungpook National University)
Ha, Sangdo (School of Food Science and Technology, Chung-Ang University)
Choi, In-Soo (Department of Infectious Disease, College of Veterinary Medicine, Konkuk University)
Choi, Changsun (Department of Food and Nutrition, Chung-Ang University)
Myoung, Jinjong (Korea Zoonosis Research Institute and Department of Bioactive Material Sciences, Chonbuk National University)
Publication Information
Microbiology and Biotechnology Letters / v.45, no.2, 2017 , pp. 93-100 More about this Journal
Abstract
Human norovirus (hNoV) infection accounts for the vast majority of virus-mediated gastroenteritis cases worldwide. It causes self-limiting acute illnesses in healthy individuals lasting for a few days, however, in immunocompromised patients, hNoV can establish chronic and potentially fatal infections. Since its discovery in 1968, much effort had been made to develop cell culture and animal infection models to no avail. Only recently, some promising breakthroughs in the development of in vitro infection models have been made. Here, we will contrast and compare those models and discuss what further needs to be done to develop a reliable and robust cell culture model.
Keywords
Human norovirus; cell culture model; human intestinal enteroid;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Paddock SW. 1999. Confocal Microscopy: Methods and Protocols, vol. 122, Humana Press, Totowa (Meth Mol Biol).
2 Hofmann AF. 2007. Biliary secretion and excretion in health and disease: current concepts. Ann. Hepatol. 6: 15-27.
3 Hofmann AF. 1977. Enterohepatic circulation of bile acids and biliary lipid secretion. Minerva Med. 68: 3011-3017.
4 Lambden PR, Caul EO, Ashley CR, Clarke IN. 1993. Sequence and genome organization of a human small round-structured (Norwalk- like) virus. Science 259: 516-519.   DOI
5 Wyatt RG, Dolin R, Blacklow NR, DuPont HL, Buscho RF, Thornhill TS, et al. 1974. Comparison of three agents of acute infectious nonbacterial gastroenteritis by cross-challenge in volunteers. J. Infect. Dis. 129: 709-714.   DOI
6 Parrino TA, Schreiber DS, Trier JS, Kapikian AZ, Blacklow NR. 1977. Clinical immunity in acute gastroenteritis caused by norwalk agent. N. Engl. J. Med. 297: 86-89.   DOI
7 Johnson PC, Mathewson JJ, DuPont HL, Greenberg HB. 1990. Multiple-challenge study of host susceptibility to norwalk gastroenteritis in US adults. J. Infect. Dis. 161: 18-21.   DOI
8 Baltimore D. 1971. Viral genetic systems. Trans. N. Y. Acad. Sci. 33: 327-332.   DOI
9 Green KY. 2007. Caliciviridae: the noroviruses, pp. 949-980. In Knipe DM and Howley PM (eds.), Fields virology, 5th ed., vol. 1. Lippincott, Williams & Wilkins, Philadelphia, PA.
10 Kapikian AZ. 2000. The discovery of the 27-nm Norwalk virus: an historic perspective. J. Infect. Dis. 181 Suppl 2: S295-302.   DOI
11 Lindesmith L, Moe C, Marionneau S, Ruvoen N, Jiang X, Lindblad L, et al. 2003. Human susceptibility and resistance to Norwalk virus infection. Nat. Med. 9: 548-553.   DOI
12 Kapikian AZ, Wyatt RG, Dolin R, Thornhill TS, Kalica AR, Chanock RM. 1972. Visualization by immune electron microscopy of a 27-nm particle associated with acute infectious nonbacterial gastroenteritis. J. Virol. 10: 1075-1081.
13 Basic M, Keubler LM, Buettner M, Achard M, Breves G, Schroder B, et al. 2014. Norovirus triggered microbiota-driven mucosal inflammation in interleukin 10-deficient mice. Inflamm. Bowel Dis. 20: 431-443.   DOI
14 Zhu S, Regev D, Watanabe M, Hickman D, Moussatche N, Jesus DM, et al. 2013. Identification of immune and viral correlates of norovirus protective immunity through comparative study of intra-cluster norovirus strains. PLoS Pathog. 9: e1003592.   DOI
15 Sestak K. 2014. Role of histo-blood group antigens in primate enteric calicivirus infections. World J. Virol. 3: 18-21.   DOI
16 Hutson AM, Atmar RL, Graham DY, Estes MK. 2002. Norwalk virus infection and disease is associated with ABO histo-blood group type. J. Infect. Dis. 185: 1335-1337.   DOI
17 Hutson AM, Airaud F, LePendu J, Estes MK, Atmar RL. 2005. Norwalk virus infection associates with secretor status genotyped from sera. J. Med. Virol. 77: 116-120.   DOI
18 Karst SM. 2010. Pathogenesis of noroviruses, emerging RNA viruses. Viruses 2: 748-781.   DOI
19 Marionneau S, Airaud F, Bovin NV, Le Pendu J, Ruvoen-Clouet N. 2005. Influence of the combined ABO, FUT2, and FUT3 polymorphism on susceptibility to Norwalk virus attachment. J. Infect. Dis. 192: 1071-1077.   DOI
20 Phillips G, Tam CC, Rodrigues LC, Lopman B. 2011. Risk factors for symptomatic and asymptomatic norovirus infection in the community. Epidemiol. Infect. 139: 1676-1686.   DOI
21 Asanaka M, Atmar RL, Ruvolo V, Crawford SE, Neill FH, Estes MK. 2005. Replication and packaging of Norwalk virus RNA in cultured mammalian cells. Proc. Natl. Acad. Sci. USA 102: 10327-10332.   DOI
22 Katayama K, Hansman GS, Oka T, Ogawa S, Takeda N. 2006. Investigation of norovirus replication in a human cell line. Arch. Virol. 151: 1291-1308.   DOI
23 Pinto RM, Diez JM, Bosch A. 1994. Use of the colonic carcinoma cell line CaCo-2 for in vivo amplification and detection of enteric viruses. J. Med. Virol. 44: 310-315.   DOI
24 Prasad BV, Hardy ME, Dokland T, Bella J, Rossmann MG, Estes MK. 1999. X-ray crystallographic structure of the Norwalk virus capsid. Science 286: 287-290.   DOI
25 Ahmed SM, Hall AJ, Robinson AE, Verhoef L, Premkumar P, Parashar UD, et al. 2014. Global prevalence of norovirus in cases of gastroenteritis: a systematic review and meta-analysis. Lancet. Infect. Dis. 14: 725-730.   DOI
26 Teunis PFM, Moe CL, Liu P, Miller SE, Lindesmith L, Baric RS, et al. 2008. Norwalk virus: How infectious is it? J. Med. Virol. 80: 1468-1476.   DOI
27 Quaroni A, Tian JQ, Goke M, Podolsky DK. 1999. Glucocorticoids have pleiotropic effects on small intestinal crypt cells. Am. J. Physiol. 277: G1027-1040.
28 Seno M, Takao S, Fukuda S, Kanamoto Y. 1991. Enhanced Isolation of influenza virus in conventional plate cell cultures by using low-speed centrifugation from clinical specimens. Am. J. Clin. Pathol. 95: 765-768.   DOI
29 Svensson L, Finlay BB, Bass D, von Bonsdorff CH, Greenberg HB. 1991. Symmetric infection of rotavirus on polarized human intestinal epithelial (Caco-2) cells. J. Virol. 65: 4190-4197.
30 Wobus CE, Karst SM, Thackray LB, Chang K-O, Sosnovtsev SV, Belliot G, et al. 2004. Replication of norovirus in cell culture reveals a tropism for dendritic cells and macrophages. PLOS Biol. 2: e432.   DOI
31 Wobus CE, Thackray LB, Virgin HW. 2006. Murine norovirus: a model system to study norovirus biology and pathogenesis. J. Virol. 80: 5104-5112.   DOI
32 Carterson AJ, Honer zu Bentrup K, Ott CM, Clarke MS, Pierson DL, Vanderburg CR, et al. 2005. A549 Lung epithelial cells grown as three-dimensional aggregates: Alternative tissue culture model for pseudomonas aeruginosa pathogenesis. Infect. Imm. 73: 1129-1140.   DOI
33 Elftman MD, Gonzalez-Hernandez MB, Kamada N, Perkins C, Henderson KS, Nunez G, Wobus CE. 2013. Multiple effects of dendritic cell depletion on murine norovirus infection. J. Gen. Virol. 94: 1761-1768.   DOI
34 Gonzalez-Hernandez MB, Liu T, Payne HC, Stencel-Baerenwald JE, Ikizler M, Yagita H, et al. 2014. Efficient norovirus and reovirus replication in the mouse intestine requires microfold (M) cells. J. Virol. 88: 6934-6943.   DOI
35 Gonzalez-Hernandez MB, Liu T, Blanco LP, Auble H, Payne HC, Wobus CE. 2013. Murine norovirus transcytosis across an in vitro polarized murine intestinal epithelial monolayer is mediated by M-like cells. J. Virol. 87: 12685-12693.   DOI
36 Noel G, Baetz NW, Staab JF, Donowitz M, Kovbasnjuk O, Pasetti MF, Zachos NC. 2017. A primary human macrophage-enteroid co-culture model to investigate mucosal gut physiology and host-pathogen interactions. Scient. Rep. 7: 45270.   DOI
37 Honer zu Bentrup K, Ramamurthy R, Ott CM, Emami K, Nelman-Gonzalez M, Wilson JW, et al. 2006. Three-dimensional organotypic models of human colonic epithelium to study the early stages of enteric salmonellosis. Microbes Infect. 8: 1813-1825.   DOI
38 LaMarca HL, Ott CM, Honer Zu Bentrup K, Leblanc CL, Pierson DL, Nelson AB, et al. 2005. Three-dimensional growth of extravillous cytotrophoblasts promotes differentiation and invasion. Placenta 26: 709-720.   DOI
39 Bok K, Parra GI, Mitra T, Abente E, Shaver CK, Boon D, et al. 2011. Chimpanzees as an animal model for human norovirus infection and vaccine development. Proc. Natl. Acad. Sci. USA 108:325-330.   DOI
40 Long JP, Hughes JH. 2001. Epstein-barr virus latently infected cells are selectively deleted in simulated-microgravity cultures. In Vitro Cell Dev. Biol. Anim. 37: 223-230.
41 Jones MK, Watanabe M, Zhu S, Graves CL, Keyes LR, Grau KR, et al. 2014. Enteric bacteria promote human and mouse norovirus infection of B cells. Science 346: 755-759.   DOI
42 Jones MK, Grau KR, Costantini V, Kolawole AO, de Graaf M, Freiden P, et al. 2015. Human norovirus culture in B cells. Nat. Protoc. 10: 1939-1947.   DOI
43 Kuss SK, Best GT, Etheredge CA, Pruijssers AJ, Frierson JM, Hooper LV, et al. 2011. Intestinal microbiota promote enteric virus replication and systemic pathogenesis. Science 334: 249-252.   DOI
44 Kane M, Case LK, Kopaskie K, Kozlova A, MacDearmid C, Chervonsky AV, Golovkina TV. 2011. Successful transmission of a retrovirus depends on the commensal microbiota. Science 334: 245-249.   DOI
45 Robinson CM, Jesudhasan PR, Pfeiffer JK. 2014. Bacterial lipopolysaccharide binding enhances virion stability and promotes environmental fitness of an enteric virus. Cell. Host. Microbe. 15: 36-46.   DOI
46 Ha S, Choi IS, Choi C, Myoung J. 2016. Infection models of human norovirus: challenges and recent progress. Arch. Virol. 161: 779-788.   DOI
47 Zhang X-F, Tan M, Chhabra M, Dai Y-C, Meller J, Jiang X. 2013. Inhibition of histo-blood group antigen binding as a novel strategy to block norovirus infections. PLoS One 8: e69379.   DOI
48 Almagro-Moreno S, Boyd EF. 2010. Bacterial catabolism of nonulosonic (sialic) acid and fitness in the gut. Gut. Microbes. 1: 45-50.   DOI
49 Bally M, Rydell GE, Zahn R, Nasir W, Eggeling C, Breimer ME, et al. 2012. Norovirus GII.4 virus-like particles recognize galactosylceramides in domains of planar supported lipid bilayers. Angew. Chem. Int. Ed. Engl. 51: 12020-12024.   DOI
50 Baldridge MT, Nice TJ, McCune BT, Yokoyama CC, Kambal A, Wheadon M, et al. 2015. Commensal microbes and interferonlambda determine persistence of enteric murine norovirus infection. Science 347: 266-269.   DOI
51 Grimprel E, Rodrigo C, Desselberger U. 2008. Rotavirus disease: impact of coinfections. Pediat. Infect. Dis. J. 27: S3-S10.   DOI
52 Wilks J, Beilinson H, Golovkina TV. 2013. Dual role of commensal bacteria in viral infections. Immunol. Rev. 255: 10.1111/imr.12097.   DOI
53 Lei S, Samuel H, Twitchell E, Bui T, Ramesh A, Wen K, et al. 2016. Enterobacter cloacae inhibits human norovirus infectivity in gnotobiotic pigs. Scientif. Rep. 6: 25017.   DOI
54 Rydell GE, Nilsson J, Rodriguez-Diaz J, Ruvoen-Clouet N, Svensson L, Le Pendu J, Larson G. 2009. Human noroviruses recognize sialyl Lewis x neoglycoprotein. Glycobiology 19: 309-320.   DOI
55 Tamura M, Natori K, Kobayashi M, Miyamura T, Takeda N. 2004. Genogroup II noroviruses efficiently bind to heparan sulfate proteoglycan associated with the cellular membrane. J. Virol. 78: 3817-3826.   DOI
56 Orchard RC, Wilen CB, Doench JG, Baldridge MT, McCune BT, Lee Y-CJ, et al. 2016. Discovery of a proteinaceous cellular receptor for a norovirus. Science 353: 933-936.   DOI
57 Cheetham S, Souza M, Meulia T, Grimes S, Han MG, Saif LJ. 2006. Pathogenesis of a genogroup ii human norovirus in gnotobiotic pigs. J. Virol. 80: 10372-10381.   DOI
58 Jung K, Wang Q, Kim Y, Scheuer K, Zhang Z, Shen Q, et al. 2012. The effects of simvastatin or interferon-${\alpha}$ on infectivity of human norovirus using a gnotobiotic pig model for the study of Antivirals. PLoS One 7: e41619.   DOI
59 Zhang S. 2004. Beyond the Petri dish. Nat. Biotechnol. 22: 151-152.   DOI
60 Nickerson CA, Goodwin TJ, Terlonge J, Ott CM, Buchanan KL, Uicker WC, et al. 2001. Three-dimensional tissue assemblies: novel models for the study of salmonella enterica serovar typhimurium pathogenesis. Infect. Imm. 69: 7106-7120.   DOI
61 Nickerson CA, Richter EG, Ott CM. 2007. Studying host-pathogen interactions in 3-D: organotypic models for infectious disease and drug development. J. Neuroimm. Pharmacol. 2: 26-31.   DOI
62 Straub TM, Honer zu Bentrup K, Coghlan PO, Dohnalkova A, Mayer BK, Bartholomew RA, et al. 2007. In vitro cell culture infectivity assay for human noroviruses. Emerg. Infect. Dis. 13: 396-403.   DOI
63 Straub TM, Bartholomew RA, Valdez CO, Valentine NB, Dohnalkova A, Ozanich RM, et al. 2011. Human norovirus infection of caco-2 cells grown as a 3-dimensional tissue structure. J. Water Health. 9: 225-240.   DOI
64 Takanashi S, Saif LJ, Hughes JH, Meulia T, Jung K, Scheuer KA, Wang Q. 2014. Failure of propagation of human norovirus in intestinal epithelial cells with microvilli grown in three-dimensional cultures. Arch Virol. 159: 257-266.   DOI
65 Mumphrey SM, Changotra H, Moore TN, Heimann-Nichols ER, Wobus CE, Reilly MJ, et al. 2007. Murine norovirus 1 infection is associated with histopathological changes in immunocompetent hosts, but clinical disease is prevented by STAT1-dependent interferon responses. J. Virol. 81: 3251-3263.   DOI
66 Huang P, Farkas T, Marionneau S, Zhong W, Ruvoen-Clouet N, Morrow AL, et al. 2003. Noroviruses bind to human ABO, Lewis, secretor histo-blood group antigens: identification of 4 distinct strain-specific patterns. J. Infect. Dis. 188: 19-31.   DOI
67 Miura T, Sano D, Suenaga A, Yoshimura T, Fuzawa M, Nakagomi T, et al. 2013. Histo-blood group antigen-like substances of human enteric bacteria as specific adsorbents for human noroviruses. J. Virol. 87: 9441-9451.   DOI
68 Marionneau S, Ruvoen N, Le Moullac-Vaidye B, Clement M, Cailleau-Thomas A, Ruiz-Palacois G, et al. 2002. Norwalk virus binds to histo-blood group antigens present on gastroduodenal epithelial cells of secretor individuals. Gastroenterology 122: 1967-1977.   DOI
69 Tan M, Jiang X. 2014. Histo-blood group antigens: a common niche for norovirus and rotavirus. Expert. Rev. Mol. Med. 16: e5.   DOI
70 Agus SG, Dolin R, Wyatt RG, Tousimis AJ, Northrup RS. 1973. Acute infectious nonbacterial gastroenteritis: Intestinal histopathology: histologic and enzymatic alterations during illness produced by the norwalk agent in man. Ann. Int. Med. 79: 18-25.   DOI
71 Jean J, Morales-Rayas R, Anoman MN, Lamhoujeb S. 2011. Inactivation of hepatitis A virus and norovirus surrogate in suspension and on food-contact surfaces using pulsed UV light (pulsed light inactivation of food-borne viruses). Food Microbiol. 28: 568-572.   DOI
72 Park GW, Linden KG, Sobsey MD. 2011. Inactivation of murine norovirus, feline calicivirus and echovirus 12 as surrogates for human norovirus (NoV) and coliphage (F+) MS2 by ultraviolet light (254 nm) and the effect of cell association on UV inactivation. Lett. Appl. Microbiol. 52: 162-167.   DOI
73 Ruvoen-Clouet N, Belliot G, Le Pendu J. 2013. Noroviruses and histo-blood groups: the impact of common host genetic polymorphisms on virus transmission and evolution. Rev. Med. Virol. 23: 355-366.   DOI
74 Thorven M, Grahn A, Hedlund K-O, Johansson H, Wahlfrid C, Larson G, Svensson L. 2005. A homozygous nonsense mutation ($428G{\rightarrow}A$) in the human secretor (FUT2) gene provides resistance to symptomatic norovirus (GGII) infections. J. Virol. 79: 15351-15355.   DOI
75 Kelly RJ, Rouquier S, Giorgi D, Lennon GG, Lowe JB. 1995. Sequence and expression of a candidate for the human Secretor blood group alpha(1,2)fucosyltransferase gene (FUT2). Homozygosity for an enzyme-inactivating nonsense mutation commonly correlates with the non-secretor phenotype. J. Biol. Chem. 270: 4640-4649.   DOI
76 Papafragkou E, Hewitt J, Park GW, Greening G, Vinje J. 2013. Challenges of culturing human norovirus in three-dimensional organoid intestinal cell culture models. PLoS One 8: e63485.   DOI
77 Duizer E, Schwab KJ, Neill FH, Atmar RL, Koopmans MP, Estes MK. 2004. Laboratory efforts to cultivate noroviruses. J. Gen. Virol. 85: 79-87.   DOI
78 Lay MK, Atmar RL, Guix S, Bharadwaj U, He H, Neill FH, et al. 2010. Norwalk virus does not replicate in human macrophages or dendritic cells derived from the peripheral blood of susceptible humans. Virology 406: 1-11.   DOI
79 Herbst-Kralovetz MM, Radtke AL, Lay MK, Hjelm BE, Bolick AN, Sarker SS, et al. 2013. Lack of norovirus replication and histoblood group antigen expression in 3-dimensional intestinal epithelial cells. Emerg. Infect. Dis. 19: 431-438.   DOI
80 Cubitt WD, Barrett ADT. 1984. Propagation of human candidate calicivirus in cell culture. J. Gen. Virol. 65: 1123-1126.   DOI
81 Gauthier R, Harnois C, Drolet JF, Reed JC, Vezina A, Vachon PH. 2001. Human intestinal epithelial cell survival: differentiation state-specific control mechanisms. Am. J. Physiol Cell Physiol. 280: C1540-1554.   DOI
82 Goke M, Kanai M, Podolsky DK. 1998. Intestinal fibroblasts regulate intestinal epithelial cell proliferation via hepatocyte growth factor. Am. J. Physiol. 274: G809-818.
83 Hughes JH. 1993. Physical and chemical methods for enhancing rapid detection of viruses and other agents. Clin. Microbiol. Rev. 6: 150-175.   DOI
84 Joshi SS, Jackson JD, Sharp JG. 1985. Differentiation inducing effects of butyrate and DMSO on human intestinal tumor cell lines in culture. Cancer. Detect. Prev. 8: 237-245.
85 Newman KL, Moe CL, Kirby AE, Flanders WD, Parkos CA, Leon JS. 2016. Norovirus in symptomatic and asymptomatic individuals: cytokines and viral shedding. Clin. Exp. Immunol. 184: 347-357.   DOI
86 Lamartina S, Roscilli G, Rinaudo D, Delmastro P, Toniatti C. 1998. Lipofection of purified adeno-associated virus Rep68 protein: toward a chromosome-targeting nonviral particle. J. Virol. 72: 7653-7658.
87 Maitreyi RS, Broor S, Kabra SK, Ghosh M, Seth P, Dar L, Prasad AK. 2000. Rapid detection of respiratory viruses by centrifugation enhanced cultures from children with acute lower respiratory tract infections. J. Clin. Virol. 16: 41-47.   DOI
88 Atmar RL, Opekun AR, Gilger MA, Estes MK, Crawford SE, Neill FH, et al. 2008. Norwalk virus shedding after experimental human infection. Emerg. Infect. Dis. 14: 1553-1557.   DOI
89 Esposito S, Ascolese B, Senatore L, Codeca C. 2014. Pediatric norovirus infection. Eur. J. Clin. Microbiol. Infect. Dis. 33: 285-290.   DOI
90 Patel MM, Widdowson MA, Glass RI, Akazawa K, Vinje J, Parashar UD. 2008. Systematic literature review of role of noroviruses in sporadic gastroenteritis. Emerg. Infect. Dis. 14: 1224-1231.   DOI
91 Lee RM, Lessler J, Lee RA, Rudolph KE, Reich NG, Perl TM, Cummings DA. 2013. Incubation periods of viral gastroenteritis: a systematic review. BMC Infect. Dis. 13: 446.   DOI
92 Bok K, Green KY. 2012. Norovirus gastroenteritis in immunocompromised patients. N. Engl. J. Med. 367: 2126-2132.   DOI
93 Saxena K, Blutt SE, Ettayebi K, Zeng XL, Broughman JR, Crawford SE, et al. 2015. Human intestinal enteroids: a new model to study human rotavirus infection, host restriction, and pathophysiology. J. Virol. 90: 43-56.
94 Bui T, Kocher J, Li Y, Wen K, Li G, Liu F, et al. 2013. Median infectious dose of human norovirus GII.4 in gnotobiotic pigs is decreased by simvastatin treatment and increased by age. J. Gen. Virol. 94: 2005-2016.   DOI
95 Brown JR, Gilmour K, Breuer J. 2016. Norovirus Infections Occur in B-Cell-Deficient Patients. Clin. Infect. Dis. 62: 1136-1138.   DOI
96 Green KY. 2016. Editorial commentary: noroviruses and B cells. Clin. Infect. Dis. 62: 1139-1140.   DOI
97 Ettayebi K, Crawford SE, Murakami K, Broughman JR, Karandikar U, Tenge VR, et al. 2016. Replication of human noroviruses in stem cell-derived human enteroids. Science 353: 1387-1393.   DOI
98 Weber F, Wagner V, Rasmussen SB, Hartmann R, Paludan SR. 2006. Double-stranded RNA is produced by positive-strand RNA viruses and DNA viruses but not in detectable amounts by negative-strand RNA viruses. J. Virol. 80: 5059-5064.   DOI
99 Monaghan P, Simpson J, Murphy C, Durand S, Quan M, Alexandersen S. 2005. Use of confocal immunofluorescence microscopy to localize viral nonstructural proteins and potential sites of replication in pigs experimentally infected with foot-andmouth disease virus. J. Virol. 79: 6410-6418.   DOI
100 Lopman BA, Adak GK, Reacher MH, Brown DW. 2003. Two epidemiologic patterns of norovirus outbreaks: surveillance in England and wales, 1992-2000. Emerg. Infect. Dis. 9: 71-77.   DOI
101 Yen C, Wikswo ME, Lopman BA, Vinje J, Parashar UD, Hall AJ. 2011. Impact of an emergent norovirus variant in 2009 on norovirus outbreak activity in the United States. Clin. Infect. Dis. 53: 568-571.   DOI
102 de Wit MA, Koopmans MP, van Duynhoven YT. 2003. Risk factors for norovirus, Sapporo-like virus, and group A rotavirus gastroenteritis. Emerg. Infect. Dis. 9: 1563-1570.   DOI