• Title/Summary/Keyword: Marasmius scorodonius

Search Result 2, Processing Time 0.021 seconds

Optimal Conditions for Laccase Production from the White-rot Fungus Marasmius scorodonius (백색부후균 Marasmius scorodonius 유래 laccase의 최적생산조건)

  • Lim, Su-Jin;Jeon, Sung-Jong
    • Microbiology and Biotechnology Letters
    • /
    • v.42 no.3
    • /
    • pp.225-231
    • /
    • 2014
  • In this study about the optimum conditions for the production of laccase, a polyphenol oxidase involved in lignin degradation, from Marasmius scorodonius, a white-rot fungus garlic mushroom, were determined. Amongst the tested media used for the enzyme's production, YM medium (1% dextrose, 0.5% malt extract, 0.3% yeast extract) allowed for the highest activity of the enzyme. Then, to optimize the culture conditions for laccase activity, the influence of various carbon and nitrogen sources was investigated in YM medium. Among various carbon and nitrogen sources, 1% galactose and 0.4% yeast extract resulted in the highest production of the enzyme, respectively. Enzyme production attained its highest level after cultivation for 15 days at $25^{\circ}C$. Zymogram analysis of the culture supernatant showed two isoenzymatic bands with molecular masses of 60-70 kDa. The optimum pH and temperature for enzyme activity were 3.4 and $75^{\circ}C$, respectively.

Purification and Characterization of the Laccase Involved in Dye Decolorization by the White-Rot Fungus Marasmius scorodonius

  • Jeon, Sung-Jong;Lim, Su-Jin
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.6
    • /
    • pp.1120-1127
    • /
    • 2017
  • Marasmius scorodonius secretes an extracellular laccase in potato dextrose broth, and this enzyme was purified up to 206-fold using $(NH_4)_2SO_4$ precipitation and a Hi-trap Q Sepharose column. The molecular mass of the purified laccase was estimated to be ~67 kDa by SDS-PAGE. The UV/vis spectrum of the enzyme was nontypical for laccases, and metal content analysis revealed that the enzyme contains 1 mole of Fe and Zn and 2 moles of Cu per mole of protein. The optimal pH for the enzymatic activity was 3.4, 4.0, and 4.6 with 2,2'-azino-bis(3-ethylbenzothazoline-6-sulfonate) (ABTS), guaiacol, and 2,6-dimethoxy phenol as the substrate, respectively. The optimal temperature of the enzyme was $75^{\circ}C$ with ABTS as the substrate. The enzyme was stable in the presence of some metal ions such as $Ca^{2+}$, $Cu^{2+}$, $Ni^{2+}$, $Mg^{2+}$, $Mn^{2+}$, $Ba^{2+}$, $Co^{2+}$, and $Zn^{2+}$ at a low concentration (1 mM), whereas $Fe^{2+}$ completely inhibited the enzymatic activity. The enzymatic reaction was strongly inhibited by metal chelators and thiol compounds except for EDTA. This enzyme directly decolorized Congo red, Malachite green, Crystal violet, and Methylene green dyes at various decolorization rates of 63-90%. In the presence of 1-hydroxybenzotriazole as a redox mediator, the decolorization of Reactive orange 16 and Remazol brilliant blue R was also achieved.