참고문헌
- Hahn-Hagerdal B, Galbe M, Gorwa-Grauslund M-F, Liden G, Zacchi G. 2006. Bio-ethanol - the fuel of tomorrow from the residues of today. Trends Biotechnol. 24: 549-556. https://doi.org/10.1016/j.tibtech.2006.10.004
- Choi SP, Nguyen MT, Sim SJ. 2010. Enzymatic pretreatment of Chlamydomonas reinhardtii biomass for ethanol production. Bioresour. Technol. 101: 5330-5336. https://doi.org/10.1016/j.biortech.2010.02.026
- Rashid N, Rehman MSU, Han J-I. 2013. Recycling and reuse of spent microalgal biomass for sustainable biofuels. Biochem. Eng. J. 75: 101-107. https://doi.org/10.1016/j.bej.2013.04.001
- Li K, Liu S, Liu X. 2014. An overview of algae bioethanol production. Int. J. Energy Res. 38: 965-977. https://doi.org/10.1002/er.3164
- Kim KH, Choi IS, Kim HM, Wi SG, Bae H-J. 2014. Bioethanol production from the nutrient stress-induced microalga Chlorella vulgaris by enzymatic hydrolysis and immobilized yeast fermentation. Bioresour. Technol. 153: 47-54. https://doi.org/10.1016/j.biortech.2013.11.059
- Molaverdi M, Karimi K, Khanahmadi M, Goshadrou A. 2013. Enhanced sweet sorghum stalk to ethanol by fungus Mucor indicus using solid state fermentation followed by simultaneous saccharification and fermentation. Ind. Crops Prod. 49: 580-585. https://doi.org/10.1016/j.indcrop.2013.06.024
- Nguyen TH, Sunwoo IY, Kim S-K. 2016. Evaluation of galactose adapted yeasts for bioethanol fermentation from Kappaphycus alvarezii hydrolyzates. J. Microbiol. Biotechnol. 26: 1259-1266. https://doi.org/10.4014/jmb.1602.02019
- Wu C-H, Chien W-C, Chou H-K, Yang J, Lin H. 2014. Sulfuric acid hydrolysis and detoxification of red alga Pterocladiella capillacea for bioethanol fermentation with thermotolerant yeast Kluyveromyces marxianus. J. Microbiol. Biotechnol. 24: 1245-1253. https://doi.org/10.4014/jmb.1402.02038
- Choi S-J, Lee S-M, Lee J-H. 2012. Production of bio-ethanol from red algae by acid hydrolysis and enzyme treatment. Appl. Chem. Eng. 23: 279-283.
- Jard G, Dumas C, Delgenes J, Marfaing H, Sialve B, Steyer J, Carrere H. 2013. Effect of thermochemical pretreatment on the solubilization and anaerobic biodegradability of the red macroalga Palmaria palmata. Biochem. Eng. J. 79: 253-258. https://doi.org/10.1016/j.bej.2013.08.011
- Talukder MMR, Das P, Wu JC. 2012. Microalgae (Nannochloropsis salina) biomass to lactic acid and lipid. Biochem. Eng. J. 68: 109-113. https://doi.org/10.1016/j.bej.2012.07.001
- Talukder MMR, Das P, Wu JC. 2014. Immobilization of microalgae on exogenous fungal mycelium: a promising separation method to harvest both marine and freshwater microalgae. Biochem. Eng. J. 91: 53-57. https://doi.org/10.1016/j.bej.2014.07.001
- Yanagisawa M, Nakamura K, Ariga O, Nakasaki K. 2011. Production of high concentrations of bioethanol from seaweeds that contain easily hydrolyzable polysaccharides. Process Biochem. 46: 2111-2116. https://doi.org/10.1016/j.procbio.2011.08.001
- Niizawa I, Heinrich JM, Irazoqui HA. 2014. Modeling of the influence of light quality on the growth of microalgae in a laboratory scale photo-bio-reactor irradiated by arrangements of blue and red LEDs. Biochem. Eng. J. 90: 214-223. https://doi.org/10.1016/j.bej.2014.05.002
- Kothari R, Pathak VV, Kumar V, Singh D. 2012. Experimental study for growth potential of unicellular alga Chlorella pyrenoidosa on dairy waste water: an integrated approach for treatment and biofuel production. Bioresour. Technol. 116: 466-470. https://doi.org/10.1016/j.biortech.2012.03.121
- Borines MG, de Leon RL, Cuello JL. 2013. Bioethanol production from the macroalgae Sargassum spp. Bioresour. Technol. 138: 22-29. https://doi.org/10.1016/j.biortech.2013.03.108
- Khambhaty Y, Mody K, Gandhi MR, Thampy S, Maiti P, Brahmbhatt H, et al. 2012. Kappaphycus alvarezii as a source of bioethanol. Bioresour. Technol. 103: 180-185. https://doi.org/10.1016/j.biortech.2011.10.015
- Kumar S, Gupta R, Kumar G, Sahoo D, Kuhad RC. 2013. Bioethanol production from Gracilaria verrucosa, a red alga, in a biorefinery approach. Bioresour. Technol. 135: 150-156. https://doi.org/10.1016/j.biortech.2012.10.120
- Park JH, Hong JY, Jang HC, Oh SG, Kim SH, Yoon JJ, et al. 2012. Use of Gelidium amansii as a promising resource for bioethanol: a practical approach for continuous dilute-acid hydrolysis and fermentation. Bioresour. Technol. 108: 83-88. https://doi.org/10.1016/j.biortech.2011.12.065
- Wells RD, Hall J, Clayton J, Champion P, Payne G, Hofstra D. 1999. The rise and fall of water net (Hydrodictyon reticulatum) in New Zealand. J. Aquat. Plant Manag. 37: 49-55.
- Kim N-J, Li H, Jung K, Chang HN, Lee PC. 2011. Ethanol production from marine algal hydrolysates using Escherichia coli KO11. Bioresour. Technol. 102: 7466-7469. https://doi.org/10.1016/j.biortech.2011.04.071
- Tan IS, Lam MK, Lee KT. 2013. Hydrolysis of macroalgae using heterogeneous catalyst for bioethanol production. Carbohydr. Polym. 94: 561-566. https://doi.org/10.1016/j.carbpol.2013.01.042
- Chou J-Y, Chang J-S, Wang W-L. 2006. Hydrodictyon reticulatum (Hydrodictyaceae, Chlorophyta), a new recorded genus and species of freshwater macroalga in Taiwan. Bio Formosa 41: 1-8.
- Chen C-Y, Zhao X-Q, Yen H-W, Ho S-H, Cheng C-L, Lee D-J, et al. 2013. Microalgae-based carbohydrates for biofuel production. Biochem. Eng. J. 78: 1-10. https://doi.org/10.1016/j.bej.2013.03.006
- Metting F. 1996. Biodiversity and application of microalgae. J. Ind. Microbiol. 17: 477-489. https://doi.org/10.1007/BF01574779
- Yamada T, Sakaguchi K. 1982. Comparative studies on Chlorella cell walls: induction of protoplast formation. Arch. Microbiol. 132: 10-13. https://doi.org/10.1007/BF00690809
- Kim JH, Kim SK, Ko EH, Kim JC, Kim JS. 2013. Hydrolysis methods for the efficient manufacture of sugar solutions from the freshwater alga water-net (Hydrodictyon reticulatum). Korean J. Weed Sci. 2: 176-183.
- Nguyen CM, Kim J-S, Hwang HJ, Park MS, Choi GJ, Choi YH, et al. 2012. Production of L-lactic acid from a green microalga, Hydrodictyon reticulatum, by Lactobacillus paracasei LA104 isolated from the traditional Korean food, makgeolli. Bioresour. Technol. 110: 552-559. https://doi.org/10.1016/j.biortech.2012.01.079
- Nguyen CM, Nguyen TN, Choi GJ, Choi YH, Jang KS, Park Y-J, et al. 2014. Acid hydrolysis of Curcuma longa residue for ethanol and lactic acid fermentation. Bioresour. Technol. 151: 227-235. https://doi.org/10.1016/j.biortech.2013.10.039
- Ho S-H, Huang S-W, Chen C-Y, Hasunuma T, Kondo A, Chang J-S. 2013. Bioethanol production using carbohydraterich microalgae biomass as feedstock. Bioresour. Technol. 135: 191-198. https://doi.org/10.1016/j.biortech.2012.10.015
- Schultz-Jensen N, Thygesen A, Leipold F, Thomsen ST, Roslander C, Lilholt H, et al. 2013. Pretreatment of the macroalgae Chaetomorpha linum for the production of bioethanol - comparison of five pretreatment technologies. Bioresour. Technol. 140: 36-42. https://doi.org/10.1016/j.biortech.2013.04.060
- Larsson S, Palmqvist E, Hahn-Hägerdal B, Tengborg C, Stenberg K, Zacchi G, et al. 1999. The generation of fermentation inhibitors during dilute acid hydrolysis of softwood. Enzyme Microb. Technol. 24: 151-159. https://doi.org/10.1016/S0141-0229(98)00101-X
- Almeida JR, Bertilsson M, Gorwa-Grauslund MF, Gorsich S, Liden G. 2009. Metabolic effects of furaldehydes and impacts on biotechnological processes. Appl. Microbiol. Biotechnol. 82: 625.
- King FG, Hossain MA. 1982. The effect of temperature, pH, and initial glucose concentration on the kinetics of ethanol production by Zymomonas mobilis in batch fermentation. Biotech. Lett. 4: 531-536. https://doi.org/10.1007/BF00131577
- Lin Y, Zhang W, Li C, Sakakibara K, Tanaka S, Kong H. 2012. Factors affecting ethanol fermentation using Saccharomyces cerevisiae BY4742. Biomass Bioenergy 47: 395-401. https://doi.org/10.1016/j.biombioe.2012.09.019
- Almeida JR, Modig T, Petersson A, Hähn-Hägerdal B, Liden G, Gorwa-Grauslund MF. 2007. Increased tolerance and conversion of inhibitors in lignocellulosic hydrolysates by Saccharomyces cerevisiae. J. Chem. Technol. Biotechnol. 82: 340-349. https://doi.org/10.1002/jctb.1676
- Pfeifer P, Bonn G, Bobleter O. 1984. Influence of biomass degradation products on the fermentation of glucose to ethanol by Saccharomyces carlsbergensis W34. Biotechnol. Lett. 6: 541-546. https://doi.org/10.1007/BF00139999
- Taherzadeh M, Gustafsson L, Niklasson C, Liden G. 2000. Physiological effects of 5-hydroxymethylfurfural on Saccharomyces cerevisiae. Appl. Microbiol. Biotechnol. 53: 701-708. https://doi.org/10.1007/s002530000328
- Ghaffour N, Missimer TM, Amy GL. 2013. Technical review and evaluation of the economics of water desalination: current and future challenges for better water supply sustainability. Desalination 309: 197-207. https://doi.org/10.1016/j.desal.2012.10.015
- Kim S-K, Hwang H-J, Kim J-D, Ko E-H, Choi J-S, Kim J-S. 2012. Usefulness of freshwater alga water-net (Hydrodictyon reticulatum) as resources for production of fermentable sugars. Korean J. Weed Sci. 32: 85-97. https://doi.org/10.5660/KJWS.2012.32.2.85
- John RP, Anisha G, Nampoothiri KM, Pandey A. 2011. Micro and macroalgal biomass: a renewable source for bioethanol. Bioresour. Technol. 102: 186-193. https://doi.org/10.1016/j.biortech.2010.06.139
- Suutari M, Leskinen E, Fagerstedt K, Kuparinen J, Kuuppo P, Blomster J. 2015. Macroalgae in biofuel production. Phycol. Res. 63: 1-18. https://doi.org/10.1111/pre.12078
- Mata TM, Martins AA, Caetano NS. 2010. Microalgae for biodiesel production and other applications: a review. Renew. Sustain. Energy Rev. 14: 217-232. https://doi.org/10.1016/j.rser.2009.07.020
- Taher H, Al-Zuhair S, Al-Marzouqi AH, Haik Y, Farid M. 2014. Enzymatic biodiesel production of microalgae lipids under supercritical carbon dioxide: process optimization and integration. Biochem. Eng. J. 90: 103-113. https://doi.org/10.1016/j.bej.2014.05.019
- Limayem A, Ricke SC. 2012. Lignocellulosic biomass for bioethanol production: current perspectives, potential issues and future prospects. Prog. Energy Combust. Sci. 38: 449-467. https://doi.org/10.1016/j.pecs.2012.03.002
- Scholz MJ, Riley MR, Cuello JL. 2013. Acid hydrolysis and fermentation of microalgal starches to ethanol by the yeast Saccharomyces cerevisiae. Biomass Bioenergy 48: 59-65. https://doi.org/10.1016/j.biombioe.2012.10.026
- Guo H, Daroch M, Liu L, Qiu G, Geng S, Wang G. 2013. Biochemical features and bioethanol production of microalgae from coastal waters of Pearl River Delta. Bioresour. Technol. 127: 422-428. https://doi.org/10.1016/j.biortech.2012.10.006
- Ho S-H, Li P-J, Liu C-C, Chang J-S. 2013. Bioprocess development on microalgae-based CO2 fixation and bioethanol production using Scenedesmus obliquus CNW-N. Bioresour. Technol. 145: 142-149. https://doi.org/10.1016/j.biortech.2013.02.119
- Choi JA, Hwang JH, Dempsey BA, Abou-Shanab RA, Min B, Song H, et al. 2011. Enhancement of fermentative bioenergy (ethanol/hydrogen) production using ultrasonication of Scenedesmus obliquus YSW15 cultivated in swine wastewater effluent. Energ. Environ. Sci. 4: 3513-3520. https://doi.org/10.1039/c1ee01068a
- Harun R, Danquah MK. 2011. Influence of acid pretreatment on microalgal biomass for bioethanol production. Process Biochem. 46: 304-309. https://doi.org/10.1016/j.procbio.2010.08.027
- Nguyen MT, Choi SP, Lee J, Lee JH, Sim SJ. 2009. Hydrothermal acid pretreatment of Chlamydomonas reinhardtii biomass for ethanol production. J. Microbiol. Biotechnol. 19: 161-166. https://doi.org/10.4014/jmb.0810.578
피인용 문헌
- Advanced wastewater treatment using filamentous algae in raceway ponds with underwater light vol.41, pp.14, 2017, https://doi.org/10.1080/15567036.2018.1549142