DOI QR코드

DOI QR Code

메탈 더미 구조를 포함하는 서브 테라헤르츠 CMOS 온칩 마이크로스트립 패치 안테나

Sub-Terahertz On-Chip Microstrip Patch Antenna in CMOS with Metal Dummy Structures

  • 심동하 (서울과학기술대학교 MSDE전공) ;
  • 양지훈 (서울과학기술대학교 스마트생산융합시스템공학과) ;
  • 한승한 (서울과학기술대학교 스마트생산융합시스템공학과) ;
  • 이현민 (서울과학기술대학교 스마트생산융합시스템공학과) ;
  • 김기훈 (서울과학기술대학교 MSDE전공) ;
  • 김호경 (서울과학기술대학교 MSDE전공)
  • Shim, Dongha (MSDE Programme, SeoulTech) ;
  • Yang, Ji Hoon (Department of Manufacturing Systems and Design Engineering, SeoulTech) ;
  • Han, Seung Han (Department of Manufacturing Systems and Design Engineering, SeoulTech) ;
  • Lee, Hyounmin (Department of Manufacturing Systems and Design Engineering, SeoulTech) ;
  • Kim, Ki Hoon (MSDE Programme, SeoulTech) ;
  • Kim, Hokyung (MSDE Programme, SeoulTech)
  • 투고 : 2017.04.27
  • 심사 : 2017.06.08
  • 발행 : 2017.06.30

초록

본 논문은 CMOS 공정에 수반되는 메탈 더미 구조가 서브 테라헤르츠 온칩 마이크로스트립 패치 안테나의 성능에 미치는 영향을 분석하였다. 45 nm CMOS 공정을 이용해 400 GHz 온칩 안테나를 설계하고, 3D EM 시뮬레이션을 통하여 메탈 더미 구조의 밀도에 따른 안테나의 공진주파수와 효율을 분석하였다. 검증을 위해 발진기와 집적된 안테나를 설계/제작하고, FTIR과 볼로미터를 이용한 준광학적 방법을 통해 측정을 수행하였다. 측정 결과, 밀도가 27 %인 더미 구조에 의해 안테나의 복사전력이 417 nW에서 87 nW로 6.8 dB 감소하는 것을 확인하였다.

This paper analyzes the effect of metal dummy structures in CMOS on antenna performances of a sub-terahertz on-chip microstrip patch antenna. A 400-GHz on-chip antenna is designed in a 45-nm CMOS process, and the resonance frequency and efficiency of the antenna are analyzed depending on the density of metal dummy structures. Antennas integrated with an oscillator are designed and fabricated for verification, and measurements are performed using quasi-optical methods with an FTIR and bolometer. The measurement results shows that the radiated power drops from 420 nW to 90 nW by 6.8 dB due to the dummy structures with the density of 27 %.

키워드

참고문헌

  1. E. Seok et al., "A 410-GHz CMOS push-push oscillator with a patch antenna", in IEEE ISSCC Dig. Tech. Papers, pp. 472-473, Feb. 2008.
  2. B. E. Stine et al., "The physical and electrical effects of metal-fill patterning practices for oxide chemical-mechanical polishing processes", IEEE Trans. Elec. Dev., vol. 45, no. 3, Mar. 1998.
  3. A. Tsuchiya, H. Onodera, "Dummy fill insertion considering the effect on high-frequency characteristics of spiral inductors", in IEEE MTT-S Int. Microw. Symp. Dig., pp. 787-790, Jun. 2008.
  4. S. Amakawa, et al., "Design of well-behavied low-loss millimetre-wave CMOS transmission lines", Workshop on Signal and Power Integrity, May 2014.
  5. D. J. Arenas, et al., "Characterization of near-terahertz complementary metal-oxide semiconductor circuits using a Fourier-transform interferometer", Review of Scientific Instruments, vol. 82, no. 10, 103106-1-103106-6, Oct. 2011. https://doi.org/10.1063/1.3647223
  6. D. M. Pozar, "Microstrip antennas", Proc. IEEE, vol. 80, no. 1, Jan. 1992.
  7. K. V. Caekenberghe et al., "A 2-40 GHz probe station based setup for on-wafer antenna measurements", IEEE Trans. Ant. Prop., vol. 56, no. 10, pp. 3241-3247, Oct. 2008. https://doi.org/10.1109/TAP.2008.929433
  8. S. Kang, S. V. Thyagarajan, and Ali M. Niknejad, "A 240 GHz wideband QPSK transmitter in 65 nm CMOS", in IEEE RFIC Symp., pp. 353-356, Jun. 2014.
  9. H. Xie, L. Belostotski, and M. Okoniewski, "A 460-GHz CMOS substrate-integrated-waveguide slot-antenna design", Micro. Opt. Tech. Lett., vol. 58, no. 2, pp. 347-351, Feb. 2016. https://doi.org/10.1002/mop.29570
  10. W. Steyaert, P. Reynaert, "A 0.54 THz signal generator in 40 nm bulk CMOS With 22 GHz tuning range and integrated planar antenna", IEEE J. Solid-State Circuits, vol. 49, no. 7, pp. 1617-1626, Jul. 2014. https://doi.org/10.1109/JSSC.2014.2319251