DOI QR코드

DOI QR Code

Comparison of Reprogramming Methods for Generation of Induced-Oligodendrocyte Precursor Cells

  • Lee, Eun-Hye (Department of Biomedical Science, Graduate School, Hanyang University) ;
  • Park, Chang-Hwan (Department of Biomedical Science, Graduate School, Hanyang University)
  • Received : 2017.03.17
  • Accepted : 2017.04.18
  • Published : 2017.07.01

Abstract

Direct conversion by trans-differentiation is of growing interest in cell therapy for incurable diseases. The efficiency of cell reprogramming and functionality of converted cells are important considerations in cell transplantation therapy. Here, we compared two representative protocols for the generation of induced-oligodendrocyte progenitor cells (iOPCs) from mouse and rat fibroblasts. Then, we showed that induction of Nkx6.2, Olig2, and Sox10 (NOS) was more effective in mouse fibroblasts and that induction of Olig2, Sox10, and Zfp536 (OSZ) was more effective at reprogramming iOPCs from rat fibroblasts. However, OSZ-iOPCs did not show greater proliferation than NOS-induced cells. Because the efficiency of iOPCs generation appears to differ between cell species depending on transcription factors and culture conditions, it is important to select appropriate methods for efficient reprogramming.

Keywords

References

  1. Barkovich, A. J. (2000) Concepts of myelin and myelination in neuroradiology. AJNR Am J Neuroradiol. 21, 1099-1109.
  2. Caiazzo, M., Giannelli, S., Valente, P., Lignani, G., Carissimo, A., Sessa, A., Colasante, G., Bartolomeo, R., Massimino, L., Ferroni, S., Settembre C., Benfenati F. and Broccoli V. (2015) Direct conversion of fibroblasts into functional astrocytes by defined transcription factors. Stem Cell Reports 4, 25-36. https://doi.org/10.1016/j.stemcr.2014.12.002
  3. Franklin, R. J. and Ffrench-Constant, C. (2008) Remyelination in the CNS: from biology to therapy. Nat. Rev. Neurosci. 9, 839-855. https://doi.org/10.1038/nrn2480
  4. Graf, T. and Enver, T. (2009) Forcing cells to change lineages. Nature 462, 587-594. https://doi.org/10.1038/nature08533
  5. Ieda, M., Fu, J. D., Delgado-Olguin, P., Vedantham, V., Hayashi, Y., Bruneau, B. G. and Srivastava, D. (2010) Direct reprogramming of fibroblasts into functional cardiomyocytes by defined factors. Cell 142, 375-386. https://doi.org/10.1016/j.cell.2010.07.002
  6. Karoutzou, G., Emrich, H. M. and Dietrich, D. E. (2008) The myelinpathogenesis puzzle in schizophrenia: a literature review. Mol. Psychiatry 13, 245-260. https://doi.org/10.1038/sj.mp.4002096
  7. Lee, S. Y., Kim, H. J. and Choi, D. (2015) Cell sources, liver support systems and liver tissue engineering: alternatives to liver transplantation. Int. J. Stem Cells 8, 36-47. https://doi.org/10.15283/ijsc.2015.8.1.36
  8. Lim, M. S., Chang, M. Y., Kim, S. M., Yi, S. H., Suh-Kim, H., Jung, S. J., Kim, M. J., Kim, J. H., Lee, Y. S., Lee, S. Y., Kim, D. W., Lee, S. H. and Park, C. H. (2015a) Generation of dopamine neurons from rodent fibroblasts through the expandable neural precursor cell stage. J. Biol. Chem. 290, 17401-17414. https://doi.org/10.1074/jbc.M114.629808
  9. Lim, M. S., Lee, S. Y. and Park, C. H. (2015b) FGF8 is essential for functionality of induced neural precursor cell-derived dopaminergic neurons. Int. J. Stem Cells 8, 228-234. https://doi.org/10.15283/ijsc.2015.8.2.228
  10. Lossos, A., Elazar, N., Lerer, I., Schueler-Furman, O., Fellig, Y., Glick, B., Zimmerman, B. E., Azulay, H., Dotan, S., Goldberg, S., Gomori, J. M., Ponger, P., Newman, J. P., Marreed, H., Steck, A. J., Schaeren-Wiemers, N., Mor, N., Harel, M., Geiger, T., Eshed-Eisenbach, Y., Meiner, V. and Peles, E. (2015) Myelin-associated glycoprotein gene mutation causes Pelizaeus-Merzbacher disease-like disorder. Brain 138, 2521-2536. https://doi.org/10.1093/brain/awv204
  11. Maria, B. L., Deidrick, K. M., Moser, H. and Naidu, S. (2003) Leukodystrophies: pathogenesis, diagnosis, strategies, therapies, and future research directions. J. Child Neurol. 18, 578-590. https://doi.org/10.1177/08830738030180090401
  12. Najm, F. J., Lager, A. M., Zaremba, A., Wyatt, K., Caprariello, A. V., Factor, D. C., Karl, R. T., Maeda, T., Miller, R. H. and Tesar, P. J. (2013) Transcription factor-mediated reprogramming of fibroblasts to expandable, myelinogenic oligodendrocyte progenitor cells. Nat. Biotechnol. 31, 426-433. https://doi.org/10.1038/nbt.2561
  13. Nave, K. A. (2010) Myelination and support of axonal integrity by glia. Nature 468, 244-252. https://doi.org/10.1038/nature09614
  14. Plath, K. and Lowry, W. E. (2011) Progress in understanding reprogramming to the induced pluripotent state. Nat. Rev. Genet. 12, 253-265. https://doi.org/10.1038/nrg2955
  15. Prasad, A., Teh, D. B., Shah Jahan, F. R., Manivannan, J., Chua, S. M. and All, A. H. (2017) Direct conversion through trans-differentiation: efficacy and safety. Stem Cells Dev. 26, 154-165. https://doi.org/10.1089/scd.2016.0174
  16. Sekiya, S. and Suzuki, A. (2011) Direct conversion of mouse fibroblasts to hepatocyte-like cells by defined factors. Nature 475, 390-393. https://doi.org/10.1038/nature10263
  17. Takahashi, N., Sakurai, T., Davis, K. L. and Buxbaum, J. D. (2011) Linking oligodendrocyte and myelin dysfunction to neurocircuitry abnormalities in schizophrenia. Prog. Neurobiol. 93, 13-24. https://doi.org/10.1016/j.pneurobio.2010.09.004
  18. Vidal, S. E., Amlani, B., Chen, T., Tsirigos, A. and Stadtfeld, M. (2014) Combinatorial modulation of signaling pathways reveals cell-typespecific requirements for highly efficient and synchronous iPSC reprogramming. Stem Cell Reports 3, 574-584. https://doi.org/10.1016/j.stemcr.2014.08.003
  19. Vierbuchen, T., Ostermeier, A., Pang, Z. P., Kokubu, Y., Sudhof, T. C. and Wernig, M. (2010) Direct conversion of fibroblasts to functional neurons by defined factors. Nature 463, 1035-1041. https://doi.org/10.1038/nature08797
  20. Xu, J., Du, Y. and Deng, H. (2015) Direct lineage reprogramming: strategies, mechanisms, and applications. Cell Stem Cell 16, 119-134. https://doi.org/10.1016/j.stem.2015.01.013
  21. Yang, N., Zuchero, J. B., Ahlenius, H., Marro, S., Ng, Y. H., Vierbuchen, T., Hawkins, J. S., Geissler, R., Barres, B. A. and Wernig, M. (2013) Generation of oligodendroglial cells by direct lineage conversion. Nat. Biotechnol. 31, 434-439. https://doi.org/10.1038/nbt.2564

Cited by

  1. Next‐generation disease modeling with direct conversion: a new path to old neurons vol.593, pp.23, 2017, https://doi.org/10.1002/1873-3468.13678