References
- Barkovich, A. J. (2000) Concepts of myelin and myelination in neuroradiology. AJNR Am J Neuroradiol. 21, 1099-1109.
- Caiazzo, M., Giannelli, S., Valente, P., Lignani, G., Carissimo, A., Sessa, A., Colasante, G., Bartolomeo, R., Massimino, L., Ferroni, S., Settembre C., Benfenati F. and Broccoli V. (2015) Direct conversion of fibroblasts into functional astrocytes by defined transcription factors. Stem Cell Reports 4, 25-36. https://doi.org/10.1016/j.stemcr.2014.12.002
- Franklin, R. J. and Ffrench-Constant, C. (2008) Remyelination in the CNS: from biology to therapy. Nat. Rev. Neurosci. 9, 839-855. https://doi.org/10.1038/nrn2480
- Graf, T. and Enver, T. (2009) Forcing cells to change lineages. Nature 462, 587-594. https://doi.org/10.1038/nature08533
- Ieda, M., Fu, J. D., Delgado-Olguin, P., Vedantham, V., Hayashi, Y., Bruneau, B. G. and Srivastava, D. (2010) Direct reprogramming of fibroblasts into functional cardiomyocytes by defined factors. Cell 142, 375-386. https://doi.org/10.1016/j.cell.2010.07.002
- Karoutzou, G., Emrich, H. M. and Dietrich, D. E. (2008) The myelinpathogenesis puzzle in schizophrenia: a literature review. Mol. Psychiatry 13, 245-260. https://doi.org/10.1038/sj.mp.4002096
- Lee, S. Y., Kim, H. J. and Choi, D. (2015) Cell sources, liver support systems and liver tissue engineering: alternatives to liver transplantation. Int. J. Stem Cells 8, 36-47. https://doi.org/10.15283/ijsc.2015.8.1.36
- Lim, M. S., Chang, M. Y., Kim, S. M., Yi, S. H., Suh-Kim, H., Jung, S. J., Kim, M. J., Kim, J. H., Lee, Y. S., Lee, S. Y., Kim, D. W., Lee, S. H. and Park, C. H. (2015a) Generation of dopamine neurons from rodent fibroblasts through the expandable neural precursor cell stage. J. Biol. Chem. 290, 17401-17414. https://doi.org/10.1074/jbc.M114.629808
- Lim, M. S., Lee, S. Y. and Park, C. H. (2015b) FGF8 is essential for functionality of induced neural precursor cell-derived dopaminergic neurons. Int. J. Stem Cells 8, 228-234. https://doi.org/10.15283/ijsc.2015.8.2.228
- Lossos, A., Elazar, N., Lerer, I., Schueler-Furman, O., Fellig, Y., Glick, B., Zimmerman, B. E., Azulay, H., Dotan, S., Goldberg, S., Gomori, J. M., Ponger, P., Newman, J. P., Marreed, H., Steck, A. J., Schaeren-Wiemers, N., Mor, N., Harel, M., Geiger, T., Eshed-Eisenbach, Y., Meiner, V. and Peles, E. (2015) Myelin-associated glycoprotein gene mutation causes Pelizaeus-Merzbacher disease-like disorder. Brain 138, 2521-2536. https://doi.org/10.1093/brain/awv204
- Maria, B. L., Deidrick, K. M., Moser, H. and Naidu, S. (2003) Leukodystrophies: pathogenesis, diagnosis, strategies, therapies, and future research directions. J. Child Neurol. 18, 578-590. https://doi.org/10.1177/08830738030180090401
- Najm, F. J., Lager, A. M., Zaremba, A., Wyatt, K., Caprariello, A. V., Factor, D. C., Karl, R. T., Maeda, T., Miller, R. H. and Tesar, P. J. (2013) Transcription factor-mediated reprogramming of fibroblasts to expandable, myelinogenic oligodendrocyte progenitor cells. Nat. Biotechnol. 31, 426-433. https://doi.org/10.1038/nbt.2561
- Nave, K. A. (2010) Myelination and support of axonal integrity by glia. Nature 468, 244-252. https://doi.org/10.1038/nature09614
- Plath, K. and Lowry, W. E. (2011) Progress in understanding reprogramming to the induced pluripotent state. Nat. Rev. Genet. 12, 253-265. https://doi.org/10.1038/nrg2955
- Prasad, A., Teh, D. B., Shah Jahan, F. R., Manivannan, J., Chua, S. M. and All, A. H. (2017) Direct conversion through trans-differentiation: efficacy and safety. Stem Cells Dev. 26, 154-165. https://doi.org/10.1089/scd.2016.0174
- Sekiya, S. and Suzuki, A. (2011) Direct conversion of mouse fibroblasts to hepatocyte-like cells by defined factors. Nature 475, 390-393. https://doi.org/10.1038/nature10263
- Takahashi, N., Sakurai, T., Davis, K. L. and Buxbaum, J. D. (2011) Linking oligodendrocyte and myelin dysfunction to neurocircuitry abnormalities in schizophrenia. Prog. Neurobiol. 93, 13-24. https://doi.org/10.1016/j.pneurobio.2010.09.004
- Vidal, S. E., Amlani, B., Chen, T., Tsirigos, A. and Stadtfeld, M. (2014) Combinatorial modulation of signaling pathways reveals cell-typespecific requirements for highly efficient and synchronous iPSC reprogramming. Stem Cell Reports 3, 574-584. https://doi.org/10.1016/j.stemcr.2014.08.003
- Vierbuchen, T., Ostermeier, A., Pang, Z. P., Kokubu, Y., Sudhof, T. C. and Wernig, M. (2010) Direct conversion of fibroblasts to functional neurons by defined factors. Nature 463, 1035-1041. https://doi.org/10.1038/nature08797
- Xu, J., Du, Y. and Deng, H. (2015) Direct lineage reprogramming: strategies, mechanisms, and applications. Cell Stem Cell 16, 119-134. https://doi.org/10.1016/j.stem.2015.01.013
- Yang, N., Zuchero, J. B., Ahlenius, H., Marro, S., Ng, Y. H., Vierbuchen, T., Hawkins, J. S., Geissler, R., Barres, B. A. and Wernig, M. (2013) Generation of oligodendroglial cells by direct lineage conversion. Nat. Biotechnol. 31, 434-439. https://doi.org/10.1038/nbt.2564
Cited by
- Next‐generation disease modeling with direct conversion: a new path to old neurons vol.593, pp.23, 2017, https://doi.org/10.1002/1873-3468.13678