Browse > Article
http://dx.doi.org/10.4062/biomolther.2017.066

Comparison of Reprogramming Methods for Generation of Induced-Oligodendrocyte Precursor Cells  

Lee, Eun-Hye (Department of Biomedical Science, Graduate School, Hanyang University)
Park, Chang-Hwan (Department of Biomedical Science, Graduate School, Hanyang University)
Publication Information
Biomolecules & Therapeutics / v.25, no.4, 2017 , pp. 362-366 More about this Journal
Abstract
Direct conversion by trans-differentiation is of growing interest in cell therapy for incurable diseases. The efficiency of cell reprogramming and functionality of converted cells are important considerations in cell transplantation therapy. Here, we compared two representative protocols for the generation of induced-oligodendrocyte progenitor cells (iOPCs) from mouse and rat fibroblasts. Then, we showed that induction of Nkx6.2, Olig2, and Sox10 (NOS) was more effective in mouse fibroblasts and that induction of Olig2, Sox10, and Zfp536 (OSZ) was more effective at reprogramming iOPCs from rat fibroblasts. However, OSZ-iOPCs did not show greater proliferation than NOS-induced cells. Because the efficiency of iOPCs generation appears to differ between cell species depending on transcription factors and culture conditions, it is important to select appropriate methods for efficient reprogramming.
Keywords
Direct conversion; Oligodendrocyte; iOPC; Efficiency;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Lossos, A., Elazar, N., Lerer, I., Schueler-Furman, O., Fellig, Y., Glick, B., Zimmerman, B. E., Azulay, H., Dotan, S., Goldberg, S., Gomori, J. M., Ponger, P., Newman, J. P., Marreed, H., Steck, A. J., Schaeren-Wiemers, N., Mor, N., Harel, M., Geiger, T., Eshed-Eisenbach, Y., Meiner, V. and Peles, E. (2015) Myelin-associated glycoprotein gene mutation causes Pelizaeus-Merzbacher disease-like disorder. Brain 138, 2521-2536.   DOI
2 Maria, B. L., Deidrick, K. M., Moser, H. and Naidu, S. (2003) Leukodystrophies: pathogenesis, diagnosis, strategies, therapies, and future research directions. J. Child Neurol. 18, 578-590.   DOI
3 Najm, F. J., Lager, A. M., Zaremba, A., Wyatt, K., Caprariello, A. V., Factor, D. C., Karl, R. T., Maeda, T., Miller, R. H. and Tesar, P. J. (2013) Transcription factor-mediated reprogramming of fibroblasts to expandable, myelinogenic oligodendrocyte progenitor cells. Nat. Biotechnol. 31, 426-433.   DOI
4 Nave, K. A. (2010) Myelination and support of axonal integrity by glia. Nature 468, 244-252.   DOI
5 Plath, K. and Lowry, W. E. (2011) Progress in understanding reprogramming to the induced pluripotent state. Nat. Rev. Genet. 12, 253-265.   DOI
6 Prasad, A., Teh, D. B., Shah Jahan, F. R., Manivannan, J., Chua, S. M. and All, A. H. (2017) Direct conversion through trans-differentiation: efficacy and safety. Stem Cells Dev. 26, 154-165.   DOI
7 Sekiya, S. and Suzuki, A. (2011) Direct conversion of mouse fibroblasts to hepatocyte-like cells by defined factors. Nature 475, 390-393.   DOI
8 Takahashi, N., Sakurai, T., Davis, K. L. and Buxbaum, J. D. (2011) Linking oligodendrocyte and myelin dysfunction to neurocircuitry abnormalities in schizophrenia. Prog. Neurobiol. 93, 13-24.   DOI
9 Vierbuchen, T., Ostermeier, A., Pang, Z. P., Kokubu, Y., Sudhof, T. C. and Wernig, M. (2010) Direct conversion of fibroblasts to functional neurons by defined factors. Nature 463, 1035-1041.   DOI
10 Vidal, S. E., Amlani, B., Chen, T., Tsirigos, A. and Stadtfeld, M. (2014) Combinatorial modulation of signaling pathways reveals cell-typespecific requirements for highly efficient and synchronous iPSC reprogramming. Stem Cell Reports 3, 574-584.   DOI
11 Xu, J., Du, Y. and Deng, H. (2015) Direct lineage reprogramming: strategies, mechanisms, and applications. Cell Stem Cell 16, 119-134.   DOI
12 Yang, N., Zuchero, J. B., Ahlenius, H., Marro, S., Ng, Y. H., Vierbuchen, T., Hawkins, J. S., Geissler, R., Barres, B. A. and Wernig, M. (2013) Generation of oligodendroglial cells by direct lineage conversion. Nat. Biotechnol. 31, 434-439.   DOI
13 Ieda, M., Fu, J. D., Delgado-Olguin, P., Vedantham, V., Hayashi, Y., Bruneau, B. G. and Srivastava, D. (2010) Direct reprogramming of fibroblasts into functional cardiomyocytes by defined factors. Cell 142, 375-386.   DOI
14 Caiazzo, M., Giannelli, S., Valente, P., Lignani, G., Carissimo, A., Sessa, A., Colasante, G., Bartolomeo, R., Massimino, L., Ferroni, S., Settembre C., Benfenati F. and Broccoli V. (2015) Direct conversion of fibroblasts into functional astrocytes by defined transcription factors. Stem Cell Reports 4, 25-36.   DOI
15 Franklin, R. J. and Ffrench-Constant, C. (2008) Remyelination in the CNS: from biology to therapy. Nat. Rev. Neurosci. 9, 839-855.   DOI
16 Graf, T. and Enver, T. (2009) Forcing cells to change lineages. Nature 462, 587-594.   DOI
17 Karoutzou, G., Emrich, H. M. and Dietrich, D. E. (2008) The myelinpathogenesis puzzle in schizophrenia: a literature review. Mol. Psychiatry 13, 245-260.   DOI
18 Lee, S. Y., Kim, H. J. and Choi, D. (2015) Cell sources, liver support systems and liver tissue engineering: alternatives to liver transplantation. Int. J. Stem Cells 8, 36-47.   DOI
19 Lim, M. S., Lee, S. Y. and Park, C. H. (2015b) FGF8 is essential for functionality of induced neural precursor cell-derived dopaminergic neurons. Int. J. Stem Cells 8, 228-234.   DOI
20 Lim, M. S., Chang, M. Y., Kim, S. M., Yi, S. H., Suh-Kim, H., Jung, S. J., Kim, M. J., Kim, J. H., Lee, Y. S., Lee, S. Y., Kim, D. W., Lee, S. H. and Park, C. H. (2015a) Generation of dopamine neurons from rodent fibroblasts through the expandable neural precursor cell stage. J. Biol. Chem. 290, 17401-17414.   DOI
21 Barkovich, A. J. (2000) Concepts of myelin and myelination in neuroradiology. AJNR Am J Neuroradiol. 21, 1099-1109.