References
- ACI Committee 318. (2014). Building code requirements for structural concrete and commentary. ACI 318-14 and ACI 318R-14, American Concrete Institute, Farmington Hills, Mich., USA, p 519.
- AFGC. (2013). Ultra high performance fibre-reinforced concretes. Interim recommendations (p. 358). France: AFGC publication.
- ASTM C1609/C1609 M. (2012). Standard test method for flexural performance of fiber-reinforced concrete (using beam with third-point loading), ASTM International, West Conshohocken, PA, pp. 1-9.
- ASTM C 39/39 M. (2014). Standard test method for compressive strength of cylindrical concrete specimens, ASTM International, West Conshohocken, PA, pp. 1-7.
- Banthia, N., & Nandakumar, N. (2006). Crack growth resistance of hybrid fiber reinforced cement composites. Cement and Concrete Composites, 25(1), 3-9. https://doi.org/10.1016/S0958-9465(01)00043-9
- Barnett, S. J., Soutsos, M. N., Millard, S. G., & Bungey, J. H. (2006). Strength development of mortars containing ground granulated blast-furnace slag: Effect of curing temperature and determination of apparent activation energies. Cement and Concrete Research, 36(3), 434-440. https://doi.org/10.1016/j.cemconres.2005.11.002
- Barros, J. A., Cunha, V. M., Ribeiro, A. F., & Antunes, J. A. B. (2005). Post-cracking behaviour of steel fibre reinforced concrete. Materials and Structures, 38(1), 47-56. https://doi.org/10.1007/BF02480574
- Bilodeau, A., & Malhotra, V. M. (2000). High-volume fly ash system: Concrete solution for sustainable development. ACI Materials Journal, 97(1), 41-48.
- Bindiganavile, V., & Banthia, N. (2001). Polymer and steel fiber-reinforced cementitious composites under impact loading-Part 2: Flexural toughness. ACI Materials Journal, 98(1), 17-24.
- Ezeldin, A. S., & Balaguru, P. N. (1992). Normal-and high-strength fiber-reinforced concrete under compression. Journal of Materials in Civil Engineering, 4(4), 415-429. https://doi.org/10.1061/(ASCE)0899-1561(1992)4:4(415)
- Jeon, J. K., Moon, H. Y., Ann, K. Y., Kim, H. S., & Kim, Y. B. (2006). Effect of ground granulated blast furnace slag, pulverized fuel ash, silica fume on sulfuric acid corrosion resistance of cement matrix. International Journal of Concrete Structures and Materials, 18(2E), 97-102. https://doi.org/10.4334/IJCSM.2006.18.2E.097
- Kinoshita, H., Circhirillo, C., SanMartin, I., Utton, C. A., Borges, P. H. R., Lynsdale, C. J., et al. (2014). Carbonation of composite cements with high mineral admixture content used for radioactive waste encapsulation. Minerals Engineering, 59, 107-114. https://doi.org/10.1016/j.mineng.2013.12.004
- Kwon, K. Y., Yoo, D. Y., Han, S. C., & Yoon, Y. S. (2015). Strengthening effects of sprayed fiber reinforced polymers on concrete. Polymer Composites, 36(4), 722-730. https://doi.org/10.1002/pc.22991
- Lee, S. C., Oh, J. H., & Cho, J. Y. (2015). Compressive behavior of fiber-reinforced concrete with end-hooked steel fibers. Materials, 8(4), 1442-1458. https://doi.org/10.3390/ma8041442
- Mahmoud, E., Ibrahim, A., El-Chabib, H., & Patibandla, V. C. (2013). Self-consolidating concrete incorporating high volume of fly ash, slag, and recycled asphalt pavement. International Journal of Concrete Structures and Materials, 7(2), 155-163. https://doi.org/10.1007/s40069-013-0044-1
- Menendez, G. V. B. B., Bonavetti, V., & Irassar, E. F. (2003). Strength development of ternary blended cement with limestone filler and blast-furnace slag. Cement and Concrete Composites, 25(1), 61-67. https://doi.org/10.1016/S0958-9465(01)00056-7
- Mindess, S., Young, J. F., & Darwin, D. (2003). Concrete (p. 644). Upper Saddle River, NJ: Prentice Hall.
- Myers, D., Kang, T. H., & Ramseyer, C. (2008). Early-age properties of polymer fiber-reinforced concrete. International Journal of Concrete Structures and Materials, 2(1), 9-14. https://doi.org/10.4334/IJCSM.2008.2.1.009
- Parra-Montesinos, G. J. (2006). Shear strength of beams with deformed steel fibers. Concrete International, 28(11), 57-66.
- RILEM TC162-TDF. (2000). Test and design methods for steel fibre reinforced concrete: Bending test. Materials and Structures, 33, 75-81 https://doi.org/10.1007/BF02484159
- Roychand, R., De Silva, S., Law, D., & Setunge, S. (2016). Micro and nano engineered high volume ultrafine fly ash cement composite with and without additives. International Journal of Concrete Structures and Materials, 10(1), 113-124. https://doi.org/10.1007/s40069-015-0122-7
- Soroushian, P., & Bayasi, Z. (1991). Fiber type effects on the performance of steel fiber reinforced concrete. ACI Materials Journal, 88(2), 129-134.
- Weibull, W. (1939). A statistical theory of the strength of materials. Proceedings, The Royal Swedish Institute for Engineering Research, 151 (pp. 1-45).
- Wille, K., & Parra-Montesinos, G. J. (2012). Effect of beam size, casting method, and support conditions on flexural behavior of ultra-high-performance fiber-reinforced concrete. ACI Materials Journal, 109(3), 379-388.
- Yao, W., Li, J., & Wu, K. (2003). Mechanical properties of hybrid fiber-reinforced concrete at low fiber volume fraction. Cement and Concrete Research, 33(1), 27-30. https://doi.org/10.1016/S0008-8846(02)00913-4
- Yazici, S., Inan, G., & Tabak, V. (2007). Effect of aspect ratio and volume fraction of steel fiber on the mechanical properties of SFRC. Construction and Building Materials, 21(6), 1250-1253. https://doi.org/10.1016/j.conbuildmat.2006.05.025
- Yoo, D. Y., Banthia, N., Yang, J. M., & Yoon, Y. S. (2016a). Size effect in normal- and high-strength amorphous metallic and steel fiber reinforced concrete beams. Construction and Building Materials, 121, 676-685. https://doi.org/10.1016/j.conbuildmat.2016.06.040
- Yoo, D. Y., Banthia, N., & Yoon, Y. S. (2016b). Flexural behavior of ultra-high-performance fiber-reinforced concrete beams reinforced with GFRP and steel rebars. Engineering Structures, 111, 246-262. https://doi.org/10.1016/j.engstruct.2015.12.003
- Yoo, D. Y., Kang, S. T., & Yoon, Y. S. (2016c). Enhancing the flexural performance of ultra-high-performance concrete using long steel fibers. Composite Structures, 147, 220-230. https://doi.org/10.1016/j.compstruct.2016.03.032
- Yoo, D. Y., & Yoon, Y. S. (2015). Structural performance of ultra-high-performance concrete beams with different steel fibers. Engineering Structures, 102, 409-423. https://doi.org/10.1016/j.engstruct.2015.08.029
- Yoo, D. Y., & Yoon, Y. S. (2016). A review on structural behavior, design, and application of ultra-high-performance fiber-reinforced concrete. International Journal of Concrete Structures and Materials, 10(2), 125-142. https://doi.org/10.1007/s40069-016-0143-x
- Yoo, D. Y., Yoon, Y. S., & Banthia, N. (2015). Flexural response of steel-fiber-reinforced concrete beams: Effects of strength, fiber content, and strain-rate. Cement and Concrete Composites, 64, 84-92. https://doi.org/10.1016/j.cemconcomp.2015.10.001
Cited by
- Feasibility of replacing minimum shear reinforcement with steel fibers for sustainable high-strength concrete beams vol.147, pp.None, 2017, https://doi.org/10.1016/j.engstruct.2017.06.004
- Enhancing the resistance of prestressed concrete sleepers to multiple impacts using steel fibers vol.166, pp.None, 2017, https://doi.org/10.1016/j.conbuildmat.2018.01.095
- Development of 300 MPa ultra-high-strength mortar through a special curing regime vol.171, pp.None, 2017, https://doi.org/10.1016/j.conbuildmat.2018.03.134
- Transfer length in full-scale pretensioned concrete beams with 1.4 m and 2.4 m section depths vol.171, pp.None, 2018, https://doi.org/10.1016/j.engstruct.2018.05.104
- Durability of Mortar Incorporating Ferronickel Slag Aggregate and Supplementary Cementitious Materials Subjected to Wet-Dry Cycles vol.12, pp.1, 2018, https://doi.org/10.1186/s40069-018-0264-5
- Evaluating Strength Development and Durability of High-Strength Concrete with 60% of Ground-Granulated Blast Furnace Slag vol.18, pp.7, 2017, https://doi.org/10.9798/kosham.2018.18.7.307
- Study on the Preparation and Fracture Behavior of Red Mud-Yellow Phosphorus Slag-Based Concrete vol.2019, pp.None, 2017, https://doi.org/10.1155/2019/4690802
- Effects of Aging on the Tensile Properties of Polyethylene Fiber-Reinforced Alkali-Activated Slag-Based Composite vol.2019, pp.None, 2019, https://doi.org/10.1155/2019/7573635
- Development and application of a hybrid prestressed segmental concrete girder utilizing low carbon materials vol.69, pp.4, 2017, https://doi.org/10.12989/sem.2019.69.4.371
- Flexural and shear behaviour of high-strength SFRC beams without stirrups vol.71, pp.10, 2017, https://doi.org/10.1680/jmacr.17.00462
- Effect of Warm Water Curing on Compressive Strength of Concrete vol.10, pp.5, 2017, https://doi.org/10.11004/kosacs.2019.10.5.045
- Different techniques of steel jacketing for retrofitting of different types of concrete beams after elevated temperature exposure vol.28, pp.None, 2017, https://doi.org/10.1016/j.istruc.2020.09.017
- Coupled Effect of Temperature and Strain Rate on Mechanical Properties of Steel Fiber-Reinforced Concrete vol.14, pp.1, 2017, https://doi.org/10.1186/s40069-020-00423-y
- Assessment of Steel Slag and Steel Fiber to Control Electromagnetic Shielding in High-Strength Concrete vol.25, pp.3, 2021, https://doi.org/10.1007/s12205-021-0629-1
- Optimizing of the Cementitious Composite Matrix by Addition of Steel Wool Fibers (Chopped) Based on Physical and Mechanical Analysis vol.14, pp.5, 2017, https://doi.org/10.3390/ma14051094
- Effect Steel Fibre Content on the Load-Carrying Capacity of Fibre-Reinforced Concrete Expansion Anchor vol.14, pp.24, 2021, https://doi.org/10.3390/ma14247757