References
- Armero, F., & Ehrlich, D. (2006). Numerical modeling of softening hinges in thin Euler-Bernoulli beams. Computers & Structures, 84(10), 641-656. https://doi.org/10.1016/j.compstruc.2005.11.010
- Bao, X., & Li, B. (2010). Residual strength of blast damaged reinforced concrete columns. International Journal of Impact Engineering, 37(3), 295-308. https://doi.org/10.1016/j.ijimpeng.2009.04.003
- Bazant, Z. P., & Jirasek, M. (2002). Nonlocal integral formulations of plasticity and damage: survey of progress. Journal of Engineering Mechanics, 128(11), 1119-1149. https://doi.org/10.1061/(ASCE)0733-9399(2002)128:11(1119)
- Bazant, Z. P., & Oh, B. H. (1983). Crack band theory for fracture of concrete. Materials and Structures, 16(3), 155-177.
- Brunesi, E., Nascimbene, R., Parisi, F., & Augenti, N. (2015). Progressive collapse fragility of reinforced concrete framed structures through incremental dynamic analysis. Engineering Structures, 104, 65-79. https://doi.org/10.1016/j.engstruct.2015.09.024
- Crawford, J. E., & Magallanes, J. M. (2011). The effects of modeling choices on the response of structural components to blast effects. International Journal of Protective Structures, 2(2), 231-266. https://doi.org/10.1260/2041-4196.2.2.231
- Crawford, J. E., Wu, Y., Choi, H. J., Magallanes, J. M., & Lan, S. (2012). Use and validation of the release III K&C concrete material model in LS-DYNA. Glendale: Karagozian & Case.
- Hallquist, J. O. (2007). LS-DYNA keyword user's manual, 970. Livermore: Livermore Software Technology Corporation.
- Heo, Y., & Kunnath, S. K. (2013). Damage-based seismic performance evaluation of reinforced concrete frames. International Journal of Concrete Structures and Materials, 7(3), 175-182. https://doi.org/10.1007/s40069-013-0046-z
- Jayasooriya, R., Thambiratnam, D. P., Perera, N. J., & Kosse, V. (2011). Blast and residual capacity analysis of reinforced concrete framed buildings. Engineering Structures, 33(12), 3483-3495. https://doi.org/10.1016/j.engstruct.2011.07.011
- Jirasek, M., & Bazant, Z. P. (2002). Inelastic analysis of structures. Chichester: Wiley.
- Jukic, M., Brank, B., & Ibrahimbegovic, A. (2014). Failure analysis of reinforced concrete frames by beam finite element that combines damage, plasticity and embedded discontinuity. Engineering Structures, 75, 507-527. https://doi.org/10.1016/j.engstruct.2014.06.017
- Lee, J., & Lopez, M. M. (2014). An experimental study on fracture energy of plain concrete. International Journal of Concrete Structures and Materials, 8(2), 129-139. https://doi.org/10.1007/s40069-014-0068-1
- Li, B., Nair, A., & Kai, Q. (2012). Residual axial capacity of reinforced concrete columns with simulated blast damage. Journal of Performance of Constructed Facilities, 26(3), 287-299. https://doi.org/10.1061/(ASCE)CF.1943-5509.0000210
- Li, Z., Zhong, B., & Shi, Y. (2016). An effective model for analysis of reinforced concrete members and structures under blast loading. Advances in Structural Engineering, 19(12), 1815-1831. https://doi.org/10.1177/1369433216649393
- Lim, K. M., Shin, H. O., Kim, D. J., Yoon, Y. S., & Lee, J. H. (2016). Numerical assessment of reinforcing details in beam-column joints on blast resistance. International Journal of Concrete Structures and Materials, 10(3), 87-96.
- Magallanes, J.M., Wu, Y., Malvar, L.J., & Crawford, J.E. (2010). Recent improvements to release III of the K&C concrete model. In 11th international LS-DYNA Users conference, 6-8 June 2010, Dearborn.
- Magnusson, J., Ansell, A., & Hansson, H. (2010a). Air-blast-loaded, high-strength concrete beams. Part II: Numerical non-linear analysis. Magazine of Concrete Research, 62(4), 235-242. https://doi.org/10.1680/macr.2010.62.4.235
- Magnusson, J., Hallgren, M., & Ansell, A. (2010b). Air-blast-loaded, high-strength concrete beams. Part I: Experimental investigation. Magazine of Concrete Research, 62(2), 127-136. https://doi.org/10.1680/macr.2008.62.2.127
- Malvar, L. J., & Ross, C. A. (1998). Review of strain rate effects for concrete in tension. ACI Materials Journal, 95(6), 735-739.
- Mazars, J. (1986). A description of micro-and macroscale damage of concrete structures. Engineering Fracture Mechanics, 25(5), 729-737. https://doi.org/10.1016/0013-7944(86)90036-6
- Mazars, J., & Pijaudier-Cabot, G. (1989). Continuum damage theory-application to concrete. Journal of Engineering Mechanics, 115(2), 345-365. https://doi.org/10.1061/(ASCE)0733-9399(1989)115:2(345)
- Murray, Y.D. (2007). Users manual for LS-DYNA concrete material model 159. Report No. FHWA-HRT-05-062, Federal Highway Administration, US Department of Transportation, USA.
- Murray, Y.D., Abu-Odeh, A.Y., & Bligh, R.P. (2007). Evaluation of LS-DYNA concrete material model 159. Report No. FHWA-HRT-05-063, Federal Highway Administration, US Department of Transportation, USA.
- Ozbolt, J., Sharma, A., & Reinhardt, H. W. (2011). Dynamic fracture of concrete-compact tension specimen. International Journal of Solids and Structures, 48(10), 1534-1543. https://doi.org/10.1016/j.ijsolstr.2011.01.033
- Parisi, F. (2015). Blast fragility and performance-based pressure-impulse diagrams of European reinforced concrete columns. Engineering Structures, 103, 285-297. https://doi.org/10.1016/j.engstruct.2015.09.019
- Park, J. Y., Kim, M. S., Scanlon, A., Choi, H., & Lee, Y. H. (2014). Residual strength of reinforced concrete columns subjected to blast loading. Magazine of Concrete Research, 66(2), 60-71. https://doi.org/10.1680/macr.13.00117
- Petrone, F., Shan, L., & Kunnath, S. K. (2016). Modeling of RC frame buildings for progressive collapse analysis. International Journal of Concrete Structures and Materials, 10(1), 1-13. https://doi.org/10.1007/s40069-016-0126-y
- Pijaudier-Cabot, G., & Bazant, Z. P. (1987). Nonlocal damage theory. Journal of engineering mechanics, 113(10), 1512-1533. https://doi.org/10.1061/(ASCE)0733-9399(1987)113:10(1512)
- Ren, W., Sneed, L. H., Yang, Y., & He, R. (2015). Numerical simulation of prestressed precast concrete bridge deck panels using damage plasticity model. International Journal of Concrete Structures and Materials, 9(1), 45-54. https://doi.org/10.1007/s40069-014-0091-2
- Roller, C., Mayrhofer, C., Riedel, W., & Thoma, K. (2013). Residual load capacity of exposed and hardened concrete columns under explosion loads. Engineering Structures, 55, 66-72. https://doi.org/10.1016/j.engstruct.2011.12.004
- Russo, P., & Parisi, F. (2016). Risk-targeted safety distance of reinforced concrete buildings from natural-gas transmission pipelines. Reliability Engineering & System Safety, 148, 57-66. https://doi.org/10.1016/j.ress.2015.11.016
- Shi, Y., Hao, H., & Li, Z. X. (2008). Numerical derivation of pressure-impulse diagrams for prediction of RC column damage to blast loads. International Journal of Impact Engineering, 35(11), 1213-1227. https://doi.org/10.1016/j.ijimpeng.2007.09.001
- Tanaka, H. (1990). Effect of lateral confining reinforcement on the ductile behaviour of reinforced concrete columns. Report 90-2, Department of Civil Engineering, University of Canterbury, Canterbury, U.K.
Cited by
- Research on Damage Assessment of Concrete-Filled Steel Tubular Column Subjected to Near-Field Blast Loading vol.2020, pp.None, 2017, https://doi.org/10.1155/2020/8883711