References
- Amiri, O., Ait-Mokhtar, A., Sleiman, H., & Nguyen, P.-T. (2015). Chloride transport in unsaturated concrete. In A. Ait-Mokhtar & O. Millet (Eds.), Structure design and degradation mechanisms in coastal environments (pp. 161-196). New York: Wiley.
- Andrade, C., & Alonso, C. (1996). Durability design based on models for corrosion rates. In H. Jennings, J. Kropp, & K. Scrivener (Eds.), The modelling of microstructure and its potential for studying transport properties and durability (pp. 473-492). Dordrecht: Springer.
- Baroghel-Bouny, V., Mainguy, M., Lassabatere, T., & Coussy, O. (1999). Characterization and identification of equilibrium and transfer moisture properties for ordinary and high-performance cementitious materials. Cement and Concrete Research, 29(8), 1225-1238. doi:10.1016/S0008-8846(99)00102-7.
- Baroghel-Bouny, V., Thiery, M., & Wang, X. (2011). Modelling of isothermal coupled moisture-ion transport in cementitious materials. Cement and Concrete Research, 41(8), 828-841. doi:10.1016/j.cemconres.2011.04.001.
- Bastidas-Arteaga, E., Chateauneuf, A., Sanchez-Silva, M., Bressolette, P., & Schoefs, F. (2010). Influence of weather and global warming in chloride ingress into concrete: A stochastic approach. Structural Safety, 32(4), 238-249. doi:10.1016/j.strusafe.2010.03.002.
- Bastidas-Arteaga, E., Chateauneuf, A., Sanchez-Silva, M., Bressolette, P., & Schoefs, F. (2011). A comprehensive probabilistic model of chloride ingress in unsaturated concrete. Engineering Structures, 33(3), 720-730. doi:10.1016/j.engstruct.2010.11.008.
- Bastidas-Arteaga, E., & Schoefs, F. (2012). Stochastic improvement of inspection and maintenance of corroding reinforced concrete structures placed in unsaturated environments. Engineering Structures, 41, 50-62. doi:10.1016/j.engstruct.2012.03.011.
- Bastidas-Arteaga, E., & Schoefs, F. (2015). Sustainable maintenance and repair of RC coastal structures. Proceedings of the ICE-Maritime Engineering, 168(4), 162-173.
- Bastidas-Arteaga, E., Schoefs, F., Stewart, M. G., & Wang, X. (2013). Influence of global warming on durability of corroding RC structures: A probabilistic approach. Engineering Structures, 51, 259-266. doi:10.1016/j.engstruct.2013.01.006.
- Bastidas-Arteaga, E., & Stewart, M. G. (2015). Damage risks and economic assessment of climate adaptation strategies for design of new concrete structures subject to chloride-induced corrosion. Structural Safety Part A, 52, 40-53. doi:10.1016/j.strusafe.2014.10.005.
- Bhide, S. (2008). Material Usage and Condition of Existing Bridges in the U.S. Skokie: Portland Cement Association.
- Breysse, D., Chaplain, M., Marache, A., & Rodney, E. (2014). Simulation of synthetic climate at local scale as a mean to assess the impact of climate change on infrastructures. Civil Engineering and Environmental Systems, 31(2), 165-178. doi:10.1080/10286608.2014.912643.
- Buchwald, A. (2000). Determination of the ion diffusion coefficient in moisture and salt loaded masonry materials by impedance spectroscopy. 3rd international PhD symposium, 2, 475.
- Damrongwiriyanupap, N., Limkatanyu, S., Xi, Y., Limkatanyu, S., & Xi, Y. (2015). A thermo-hygro-coupled model for chloride penetration in concrete structures. Advances in Materials Science and Engineering, 2015, e682940. doi:10.1155/2015/682940.
- De Vera, G., Climent, M. A., Viqueira, E., Anton, C., & Lopez, M. P. (2015). Chloride penetration prediction in concrete through an empirical model based on constant flux diffusion. Journal of Materials in Civil Engineering, 27(8), 04014231. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001173
- de Vera, G., Hidalgo, A., Climent, M. A., Andrade, C., & Alonso, C. (2000). Chloride-ion activities in simplified synthetic concrete pore solutions: The effect of the accompanying ions. Journal of the American Ceramic Society, 83(3), 640-644. doi:10.1111/j.1151-2916.2000.tb01245.x.
- Duracrete. (2000). Statistical quantification of the variables in the limit state functions, DuraCrete-Probabilistic performance based durability design of concrete structures (vol. EU-Brite EuRam III. Contract BRPR-CT95-0132, project BE95-1347/R9).
- Flint, M., Michel, A., Billington, S. L., & Geiker, M. R. (2014). Influence of temporal resolution and processing of exposure data on modeling of chloride ingress and reinforcement corrosion in concrete. Materials and Structures, 47(4), 729-748. doi:10.1617/s11527-013-0091-8.
- Genuchten, M. (1980). A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soils Science of America Journal, 44, 892-898. https://doi.org/10.2136/sssaj1980.03615995004400050002x
- Hidalgo, A., De Vera, G., Climent, M. A., Andrade, C., & Alonso, C. (2001). Measurements of chloride activity coefficients in real portland cement paste pore solutions. Journal of the American Ceramic Society, 84(12), 3008-3012. doi:10.1111/j.1151-2916.2001.tb01128.x.
- Imam, A., Anifowose, F., & Azad, A. K. (2015). Residual strength of corroded reinforced concrete beams using an adaptive model based on ANN. International Journal of Concrete Structures and Materials, 9, 159. doi:10.1007/s40069-015-0097-4.
- Jensen, O. M., & Hansen, P. F. (1999). Influence of temperature on autogenous deformation and relative humidity change in hardening cement paste. Cement and Concrete Research, 29(4), 567-575. https://doi.org/10.1016/S0008-8846(99)00021-6
- Kim, H. R., Choi, W. C., Yoon, S. C., et al. (2016). Evaluation of bond properties of reinforced concrete with corroded reinforcement by uniaxial tension testing. International Journal of Concrete Structures and Materials, 10(Suppl 3), 43. doi:10.1007/s40069-016-0152-9.
- Larsen, C. K. (1998). Chloride binding in concrete-effect of surrounding environment and concrete composition. PhD thesis. The Norwegian University of Science and Technology.
- Liu, Y., & Weyers, R. E. (1998). Modeling the time to corrosion cracking in chloride contaminated reinforced concrete structures. ACI Materials Journal, 95(6), 675-680.
- Marchand, J., & Samson, E. (2009). Predicting the service-life of concrete structures-Limitations of simplified models. Cement & Concrete Composites, 31(8), 515-521. doi:10.1016/j.cemconcomp.2009.01.007.
- Martin-Perez, B. (1999). Service life modeling of R.C. highway structures exposed to chlorides. PhD thesis. Toronto: University of Toronto.
- Morga, M., & Marano, G. C. (2015). Chloride penetration in circular concrete columns. International Journal of Concrete Structures and Materials, 9(2), 173-183. doi:10.1007/s40069-014-0095-y.
- Mualem, Y. (1976). A new model for predicting the hydraulic conductivity of unsaturated porous media. Water Resources Research, 12(3), 513-522. https://doi.org/10.1029/WR012i003p00513
- Nguyen, T. Q. (2007). Physicochemical modelling of chloride ingresse into cementitious materials. Ph.D. thesis. France.
- Nguyen, P. T., & Amiri, O. (2016). Study of the chloride transport in unsaturated concrete: Highlighting of electrical double layer, temperature and hysteresis effects. Construction and Building Materials, 122, 284-293. doi:10.1016/j.conbuildmat.2016.05.154.
- Nielsen, E. P., & Geiker, M. R. (2003). Chloride diffusion in partially saturated cementitious material. Cement and Concrete Research, 33(1), 133-138. doi:10.1016/S0008-8846(02)00939-0.
- Pang, L., & Li, Q. (2016). Service life prediction of RC structures in marine environment using long term chloride ingress data: Comparison between exposure trials and real structure surveys. Construction and Building Materials, 113, 979-987. doi:10.1016/j.conbuildmat.2016.03.156.
- Pritzl, M. D., Tabatabai, H., & Ghorbanpoor, A. (2014). Laboratory evaluation of select methods of corrosion prevention in reinforced concrete bridges. International Journal of Concrete Structures and Materials, 8, 201. doi:10.1007/s40069-014-0074-3.
- Radlinska, A., McCarthy, L. M., Matzke, J., et al. (2014). Synthesis of DOT use of beam end protection for extending the life of bridges. International Journal of Concrete Structures and Materials, 8, 185. doi:10.1007/s40069-014-0077-0.
- Samson, E., & Marchand, J. (2007). Modeling the effect of temperature on ionic transport in cementitious materials. Cement and Concrete Research, 37(3), 455-468. doi:10.1016/j.cemconres.2006.11.008.
- Sleiman, H., Amiri, O., & Ait-Mokhtar, A. (2009). Chloride transport in unsaturated cement-based materials. European Journal of Environmental and Civil Engineering, 13(4), 489-499. doi:10.1080/19648189.2009.9693125.
- Srubar, W. V. (2015). Stochastic service-life modeling of chloride-induced corrosion in recycled-aggregate concrete. Cement & Concrete Composites, 55, 103-111. doi:10.1016/j.cemconcomp.2014.09.003.
- Tang, L., & Nilsson, L.-O. (1993). Chloride binding capacity and binding isotherms of OPC pastes and mortars. Cement and Concrete Research, 23(2), 247-253. https://doi.org/10.1016/0008-8846(93)90089-R
- Tuutti, K. (1982). Corrosion of steel in concrete. Stockholm: Swedish Cement and Concrete Research Institute.
- Wang, X., Nguyen, M., Stewart, M. G., Syme, M., & Leitch, A. (2010). Analysis of Climate Change Impacts on the Deterioration of Concrete Infrastructure - Part 1: Mechanisms, Practices, Modelling and Simulations - A review. Canberra: CSIRO.
- Xi, Y., & Bazant, Z. P. (1999). Modeling chloride penetration in saturated concrete. Journal of Materials in Civil Engineering, 11(1), 58-65. https://doi.org/10.1061/(ASCE)0899-1561(1999)11:1(58)
- Yuan, Y., & Jiang, J. (2011). Prediction of temperature response in concrete in a natural climate environment. Construction and Building Materials, 25(8), 3159-3167. doi:10.1016/j.conbuildmat.2010.10.008.
- Zhang, J., Huang, Y., Qi, K., & Gao, Y. (2012). Interior relative humidity of normal- and high-strength concrete at early age. Journal of Materials in Civil Engineering, 24(6), 615-622. doi:10.1061/(ASCE)MT.1943-5533.0000441.
Cited by
- Seismic Retrofit Screening of Existing Highway Bridges With Consideration of Chloride-Induced Deterioration: A Bayesian Belief Network Model vol.4, pp.None, 2017, https://doi.org/10.3389/fbuil.2018.00067
- Probabilistic analysis of chloride penetration in reinforced concrete subjected to pre-exposure static and fatigue loading and wetting-drying cycles vol.84, pp.None, 2017, https://doi.org/10.1016/j.engfailanal.2017.11.008
- A Bayesian network framework for statistical characterisation of model parameters from accelerated tests: application to chloride ingress into concrete vol.14, pp.5, 2017, https://doi.org/10.1080/15732479.2017.1377737
- Time and Crack Effect on Chloride Diffusion for Concrete with Fly Ash vol.12, pp.1, 2017, https://doi.org/10.1186/s40069-018-0230-2
- Reliability of Reinforced Concrete Structures Subjected to Corrosion-Fatigue and Climate Change vol.12, pp.1, 2017, https://doi.org/10.1186/s40069-018-0235-x
- Chloride Penetration in Coastal Concrete Structures: Field Investigation and Model Development vol.2019, pp.None, 2019, https://doi.org/10.1155/2019/4537283
- Probabilistic Analysis for Estimation of the Initiation Time of Corrosion vol.15, pp.2, 2019, https://doi.org/10.2478/mmce-2019-0004
- Sensitivity Analyses on Chloride Ion Penetration into Undersea Tunnel Concrete vol.17, pp.10, 2017, https://doi.org/10.3151/jact.17.592
- Chloride Transport in Cracked Concrete Subjected to Wetting - Drying Cycles: Numerical Simulations and Measurements on Bridges Exposed to De-Icing Salts vol.6, pp.None, 2020, https://doi.org/10.3389/fbuil.2020.561897
- Bayesian Assessment of the Effects of Cyclic Loads on the Chloride Ingress Process into Reinforced Concrete vol.10, pp.6, 2017, https://doi.org/10.3390/app10062040
- Polynomial chaos expansion for lifetime assessment and sensitivity analysis of reinforced concrete structures subjected to chloride ingress and climate change vol.21, pp.4, 2017, https://doi.org/10.1002/suco.201900398
- Correlation of tensile strength and corrosion initiation period of reinforced concrete vol.8, pp.1, 2021, https://doi.org/10.1080/23311916.2021.1999039
- A meso-stochastic research on the chloride transport in unsaturated concrete vol.273, pp.None, 2017, https://doi.org/10.1016/j.conbuildmat.2020.121986
- Sustainability Levels in Comparison with Mechanical Properties and Durability of Pumice High-Performance Concrete vol.11, pp.11, 2017, https://doi.org/10.3390/app11114964
- Probabilistic and sensitivity analysis of analytical models of corrosion onset for reinforced concrete structures vol.25, pp.9, 2021, https://doi.org/10.1080/19648189.2019.1591307
- New directions for reinforced concrete coastal structures vol.2, pp.1, 2017, https://doi.org/10.1186/s43065-021-00015-4
- Calibration of boundary conditions correlated to the diffusivity of chloride ions: An accurate study for random diffusivity vol.126, pp.None, 2022, https://doi.org/10.1016/j.cemconcomp.2021.104346