References
- Abdalla, H. M., & Karihaloo, B. L. (2003). Determination of size-independent specific fracture energy of concrete from three-point bend and wedge splitting tests. Magazine of Concrete Research, 55(2), 133-141. https://doi.org/10.1680/macr.2003.55.2.133
- Abou El-Mal, H. S. S., Sherbini, A. S., & Sallam, H. E. M. (2015). Mode II fracture toughness of hybrid FRCs. International Journal of Concrete Structures and Materials, 9(4), 475-486. doi:10.1007/s40069-015-0117-4.
- Amirkhanian, A., Spring, D., Roesler, J., Park, K., & Paulino, G. (2011). Disk-Shaped Compact Tension Test for Plain Concrete. In Transportation and Development Institute Congress 2011 (pp. 688-698). American Society of Civil Engineers. doi:10.1061/41167(398)66
- Amirkhanian, A., Spring, D., Roesler, J., & Paulino, G. (2016). Forward and inverse analysis of concrete fracture using the disk-shaped compact tension test. ASTM Journal of Testing and Evaluation, 44, 625-634.
- Bazant, Z. P. (1996). Analysis of work-of-fracture method for measuring fracture energy of concrete. Journal of Engineering Mechanics, ASCE, 122(2), 138-144. https://doi.org/10.1061/(ASCE)0733-9399(1996)122:2(138)
- Bazant, Z. P., & Kazemi, M. T. (1991). Size dependence of concrete fracture energy determined by RILEM work-of-fracture method. International Journal of Fracture, 51, 121-138.
- Bruhwiler, E., & Wittmann, F. H. (1990). The wedge splitting test: A method of performing stable fracture mechanics tests. Engineering Fracture Mechanics, 35(1-3), 117-125. https://doi.org/10.1016/0013-7944(90)90189-N
- Cifuentes, H., Alcalde, M., & Medina, F. (2013a). Measuring the size-independent fracture energy of concrete. Strain, 49(1), 54-59. https://doi.org/10.1111/str.12012
- Cifuentes, H., Garcia, F., Maeso, O., & Medina, F. (2013b). Influence of the properties of polypropylene fibres on the fracture behaviour of low-, normal- and high-strength FRC. Construction and Building Materials, 45, 130-137. https://doi.org/10.1016/j.conbuildmat.2013.03.098
- Cifuentes, H., & Karihaloo, B. L. (2013). Determination of size-independent specific fracture energy of normal- and high-strength self-compacting concrete from wedge splitting tests. Construction and Building Materials, 48, 548-553. https://doi.org/10.1016/j.conbuildmat.2013.07.062
- De Wilder, K., De Roeck, G., & Vandewalle, L. (2016). The use of advanced optical measurement methods for the mechanical analysis of shear deficient prestressed concrete members. International Journal of Concrete Structures and Materials, 10(2), 189-203. doi:10.1007/s40069-016-0135-x.
- Elices, M., Guinea, G. V., & Planas, J. (1992). Measurement of the fracture energy using three-point bend tests: Part 3-Influence of cutting the P-d tail. Materials and Structures, 25, 327-334. https://doi.org/10.1007/BF02472591
- Gopalaratnam, V. S., & Shah, S. P. (1987). SP105-01 Failure mechanisms and fracture of fiber reinforced concrete. ACI Special Publication, 105, 1-26.
- Guinea, G. V., Planas, J., & Elices, M. (1992). Measurement of the fracture energy using three-point bend tests: Part 1-Influence of experimental procedures. Materials and Structures, 25(4), 212-218. https://doi.org/10.1007/BF02473065
- Harkouss, R. H., & Hamad, B. S. (2015). Performance of high strength self-compacting concrete beams under different modes of failure. International Journal of Concrete Structures and Materials, 9(1), 69-88. doi:10.1007/s40069-014-0088-x.
- Hillerborg, A., Modeer, M., & Petersson, P. E. (1976). Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements. Cement and Concrete Research, 6, 773-782. https://doi.org/10.1016/0008-8846(76)90007-7
- Hu, X. Z., & Wittmann, F. H. (1992). Fracture energy and fracture process zone. Materials and Structures, 25(6), 319-326. https://doi.org/10.1007/BF02472590
- Issa, M., Issa, M., Islam, M., & Chudnovsky, A. (2000). Size effects in concrete fracture-Part II: Analysis of test results. International Journal of Fracture, 102(1), 25-42. doi:10.1023/A:1007677705861.
- Karihaloo, B. L. (1995). Fracture mechanics and structural concrete. USA: Longman Scientific and Technical Publishers.
- Karihaloo, B. L., Abdalla, H. M., & Imjai, T. (2003). A simple method for determining the true specific fracture energy of concrete. Magazine of Concrete Research, 55(5), 471-481. https://doi.org/10.1680/macr.2003.55.5.471
- Kim, M., Buttlar, W., Baek, J., & Al-Qadi, I. (2009). Field and laboratory evaluation of fracture resistance of Illinois hotmix asphalt overlay mixtures. Transportation Research Record: Journal of the Transportation Research Board, 2127, 146-154. doi:10.3141/2127-17.
- Korte, S., Boel, V., De Corte, W., & De Schutter, G. (2014). Static and fatigue fracture mechanics properties of self-compacting concrete using three-point bending tests and wedge-splitting tests. Construction and Building Materials, 57, 1-8. doi:10.1016/j.conbuildmat.2014.01.090.
- Kwon, S., Zhao, Z., & Shah, S. (2008). Effect of specimen size on fracture energy and softening curve of concrete: Part II. Inverse analysis and softening curve. Cement and Concrete Research, 38(8-9), 1061-1069. doi:10.1016/j.cemconres.2008.03.014.
- Lee, J., & Lopez, M. M. (2014). An experimental study on fracture energy of plain concrete. International Journal of Concrete Structures and Materials, 8(2), 129-139. doi:10.1007/s40069-014-0068-1.
- Linsbauer, H. N., & Tschegg, E. K. (1986). Fracture energy determination of concrete with cube-shaped specimens. Zement und Beton, 31, 38-40.
- Merta, I., & Tschegg, E. K. (2013). Fracture energy of natural fibre reinforced concrete. Construction and Building Materials, 40, 991-997. doi:10.1016/j.conbuildmat.2012.11.060.
- Muralidhara, S., Raghu Prasad, B. K., Karihaloo, B. L., & Singh, R. K. (2011). Size-independent fracture energy in plain concrete beams using tri-linear model. Construction and Building Materials, 25(7), 3051-3058. doi:10.1016/j.conbuildmat.2011.01.003.
- Nam, I. W., & Lee, H. K. (2015). Image analysis and DC conductivity measurement for the evaluation of carbon nanotube distribution in cement matrix. International Journal of Concrete Structures and Materials, 9(4), 427-438. doi:10.1007/s40069-015-0121-8.
- Nieto, B., Lozano, M., & Seitl, S. (2014). Determining fracture energy parameters of concrete from the modified compact tension test. Frattura ed Integrita Strutturale, 30, 383-393. doi:10.3221/IGF-ESIS.30.46.
- Pandey, S. R., Kumar, S., & Srivastava, A. K. L. (2016). Determination of double-K fracture parameters of concrete using split-tension cube: A revised procedure. International Journal of Concrete Structures and Materials. doi:10.1007/s40069-016-0139-6.
- Pinho, S. T., Robinson, P., & Iannucci, L. (2006). Fracture toughness of the tensile and compressive fibre failure modes in laminated composites. Composites Science and Technology, 66(13), 2069-2079. doi:10.1016/j.compscitech.2005.12.023.
- Planas, J., Elices, M., & Guinea, G. V. (1992). Measurement of the fracture energy using three-point bend tests: Part 2-Influence of bulk energy dissipation. Materials and Structures, 25, 305-312. https://doi.org/10.1007/BF02472671
- RILEM. (1985). TCM-85: Determination of the fracture energy of mortar and concrete by means of three-point bend tests on notched beams. Materials and Structures, 18(106), 287-290. https://doi.org/10.1007/BF02472918
- RILEM. (2004). TC QFS: "Quasibrittle fracture scaling and size effect"- Final report. Materials and Structures, 37(8), 547-568. https://doi.org/10.1007/BF02481579
- RILEM. (2007). TC 187-SOC: Experimental determination of the stress-crack opening curve for concrete in tension. Final Report of RILEM Technical Committee.
- Shah, S. G., & Kishen, J. M. C. (2011). Fracture properties of concrete-concrete interfaces using digital image correlation. Experimental Mechanics, 51(3), 303-313. doi:10.1007/s11340-010-9358-y.
- Van Mier, J. G. M. (1991). Mode I fracture of concrete: Discontinuous crack growth and crack interface grain bridging. Cement and Concrete Research, 21(1), 1-15. doi:10.1016/0008-8846(91)90025-D.
- Vesely, V., Routil, L., & Seitl, S. (2011). Wedge-splitting test-determination of minimal starting notch length for various cement based composites part I: Cohesive crack modelling. Key Engineering Materials, 452-453, 77-80.
- Vydra, V., Trtik, K., & Vodak, F. (2012). Size independent fracture energy of concrete. Construction and Building Materials, 26(1), 357-361. https://doi.org/10.1016/j.conbuildmat.2011.06.034
- Wagnoner, M. P., Buttlar, W. G., & Paulino, G. H. (2005). Disk-shaped compact tension test for asphalt concrete fracture. Experimental Mechanics, 45(3), 270-277. doi:10.1007/BF02427951.
- Wagoner, M., Buttlar, W., Paulino, G., & Blankenship, P. (2006). Laboratory testing suite for characterization of asphalt concrete mixtures obtained from field cores. Asphalt Paving Technology, 75, 815-852.
- Wittmann, F. H., Rokugo, K., Bruhwiler, E., Mihashi, H., & Simonin, P. (1988). Fracture energy and strain softening of concrete as determined by means of compact tension specimens. Materials and Structures, 21, 21-32. https://doi.org/10.1007/BF02472525
- Zofka, A., & Braham, A. (2009). Comparison of low-temperature field performance and laboratory testing of 10 test sections in the Midwestern United States. Transportation Research Record: Journal of the Transportation Research Board, 2127, 107-114. doi:10.3141/2127-13.
Cited by
- Fitting the fracture curve of concrete as a density function pertaining to the generalized extreme value family vol.129, pp.None, 2017, https://doi.org/10.1016/j.matdes.2017.05.030
- Behavior of High-Strength Polypropylene Fiber-Reinforced Self-Compacting Concrete Exposed to High Temperatures vol.30, pp.11, 2017, https://doi.org/10.1061/(asce)mt.1943-5533.0002491
- Research on Freeze-Thaw Cycles of Expansive Concrete in Civil and Repairing Engineering vol.1168, pp.None, 2017, https://doi.org/10.1088/1742-6596/1168/2/022047
- Four-point bending tests for the fracture properties of concrete vol.211, pp.None, 2019, https://doi.org/10.1016/j.engfracmech.2019.03.004
- Pure Mode I Fracture Toughness Determination in Rocks Using a Pseudo-Compact Tension (pCT) Test Approach vol.53, pp.7, 2020, https://doi.org/10.1007/s00603-020-02102-6
- Influence of Nanomaterials on Physical Mechanics and Durability of Concrete Composite Piers vol.216, pp.1, 2017, https://doi.org/10.1080/10584587.2021.1911262