DOI QR코드

DOI QR Code

Evaluation of Dispersion of Activated Carbon Fiber in Mortar Using Electrical Resistivity Method

전기저항 측정을 통한 모르타르 내의 섬유활성탄의 분산성 평가

  • Lee, Bo Yeon (Department of Architectural Engineering, The University of Suwon) ;
  • Lee, Jae Seoung (Department of Architectural Engineering, The University of Suwon)
  • Received : 2017.01.11
  • Accepted : 2017.03.29
  • Published : 2017.06.30

Abstract

Various types of fibers are utilized in cementitious materials in order to improve their performances. Here, the extent of fiber dispersion is of key importance regardless of the purpose of using fiber. In this study, activated carbon fiber dispersion in mortar samples was evaluated using electrical resistivity method. In particular, the extent of fiber dispersion was compared per mixing methods and surface treatments. The results suggest that the surface resistivity method is capable of evaluating dispersion of activated carbon fiber and that ultrasound dispersion method is superior to mortar mixer and hand mixer method. The use of superplasticizer improved dispersion but acid treatment was not effective.

시멘트계 재료의 성능을 개선시키기 위하여 다양한 섬유가 사용되고 있다. 이때, 섬유 사용 목적에 관계없이 섬유의 분산성은 목표로 하는 성능 개선에 매우 중요한 지표이다. 본 연구에서는 모르타르 내의 섬유활성탄의 분산을 전기저항 방법으로 평가하였다. 특히, 믹싱 방법과 섬유의 표면 처리에 따른 섬유 분산성의 차이가 다루어졌다. 연구 결과 표면전기저항 방법은 섬유활성탄의 분산성을 평가하는데 적합하였고, 초음파 방식의 분산 방법이 몰탈믹서와 핸드믹서 방법에 비하여 우월한 것으로 나타났다. 고성능 감수제는 섬유의 분산성을 향상하는 효과가 있었으나 산 처리는 전기저항성을 높이는 결과를 가져왔다.

Keywords

References

  1. Samir, A. A. and Faisal, F. W., "Flexural behavior of high-strength fiber reinforced concrete beams", Structural Journal, Vol. 90, No. 3, 1993, pp. 279-287.
  2. Oh, B. H., "Flexural analysis of reinforced concrete beams containing steel fibers", Journal of Structural Engineering, Vol. 118, No. 10, 1992, pp. 2921-2836.
  3. Kang, S. -T., Kim, Y. -Y., Lee, B. -Y., and Kim, J. -K., "Fiber orientation impacts on the flexural behavior of steel fiber reinforced high strength concrete", Journal of the Korea Concrete Institute, Vol. 20, No. 6, 2008, pp. 731-739. https://doi.org/10.4334/JKCI.2008.20.6.731
  4. Kim, S. -H., Kwon, B. -U., and Kang, T. H. -K., "Seismic performance assessment of roof-level joints with steel fiberreinforced high-strength concrete", Journal of the Korea Concrete Institute, Vol. 28, No. 2, 2016, pp. 235-244. https://doi.org/10.4334/JKCI.2016.28.2.235
  5. Banthia, N., and Gupta, R., "Influence of polypropylene fiber geometry on plastic shrinkage cracking in concrete", Cement and Concrete Research, Vol. 36, No. 7, 2006, pp. 1263-1267. https://doi.org/10.1016/j.cemconres.2006.01.010
  6. Mechtcherine, V., Dudziak, L., and Schulze, J., "Internal curing by super absorbent polymers (SAP)-Effects on material properties of self-compacting fibre-reinforced high performance concrete", Int RILEM Conf on Volume Changes of Hardening Concrete: Testing and Mitigation, Lyngby, Denmark, 2006, pp. 87-96.
  7. Nadelman, E., and Kurtis, K. "A resistivity-based approach to optimizing concrete performance", Concrete International, Vol. 36, No. 5, 2014, pp. 50-54.
  8. Sherif, Y., and Christopher, Y. T., "Conductive concrete overlay for bridge deck deicing", Materials Journal, Vol. 96, No. 3, 1999, pp. 382-390.
  9. Whittington, H., McCarter, J., and Forde, M., "The conduction of electricity through concrete", Magazine of concrete research, Vol. 33, No. 114, 1981, pp. 48-60. https://doi.org/10.1680/macr.1981.33.114.48
  10. Chen, P. -W., and Chung, D. D., "Carbon fiber reinforced concrete for smart structures capable of non-destructive flaw detection", Smart Materials and Structures, Vol. 2, No. 1, 1993, pp. 22-30. https://doi.org/10.1088/0964-1726/2/1/004
  11. Akkaya, Y., Picka, J., and Shah, S. P., "Spatial distribution of aligned short fibers in cement composites", Journal of materials in civil engineering, Vol. 12, No. 3, 2000, pp. 272-279. https://doi.org/10.1061/(ASCE)0899-1561(2000)12:3(272)
  12. Konsta-Gdoutos, M. S., Metaxa, Z. S., and Shah, S. P., "Highly dispersed carbon nanotube reinforced cement based materials", Cement and Concrete Research, Vol. 40, No. 7, 2010, pp. 1052-1059. https://doi.org/10.1016/j.cemconres.2010.02.015
  13. Fu, X., Lu, W., and Chung, D. D. L., "Ozone treatment of carbon fiber for reinforcing cement", Carbon, Vol. 36, No. 9, 1998, pp. 1337-1345. https://doi.org/10.1016/S0008-6223(98)00115-8
  14. Chung, D., "Dispersion of short fibers in cement", Journal of Materials in Civil Engineering, Vol. 17, No. 4, 2005, pp. 379-383. https://doi.org/10.1061/(ASCE)0899-1561(2005)17:4(379)
  15. Chermant, J. -L., Chermant, L., Coster, M., Dequiedt, A. -S., and Redon, C., "Some fields of applications of automatic image analysis in civil engineering", Cement and Concrete Composites, Vol. 23, No. 2, 2001, pp. 157-169. https://doi.org/10.1016/S0958-9465(00)00059-7
  16. Akkaya, Y., Shah, S.P., and Ankenman, B., "Effect of fiber dispersion on multiple cracking of cement composites", Journal of Engineering Mechanics, Vol. 127, No. 4, 2001, pp. 311-316. https://doi.org/10.1061/(ASCE)0733-9399(2001)127:4(311)
  17. Kim, J. -K., Kim, J. -S., Ha, G. J., and Kim, Y. Y., "Tensile and fiber dispersion performance of ECC (engineered cementitious composites) produced with ground granulated blast furnace slag", Cement and Concrete Research, Vol. 37, No. 7, 2007, pp. 1096-1105. https://doi.org/10.1016/j.cemconres.2007.04.006
  18. Woo, L. Y., Wansom, S., Ozyurt, N., Mu, B., Shah, S. P., and Mason, T. O., "Characterizing fiber dispersion in cement composites using AC-Impedance spectroscopy", Cement and Concrete Composites, Vol. 27, No. 6, 2005, pp. 627-636. https://doi.org/10.1016/j.cemconcomp.2004.06.003
  19. Xie, P., and J. J., Beaudoin, "Electrically conductive concrete and its application in deicing", ACI Special Publication, Vol. 154, 1995, pp. 399-418.
  20. Wu, T., Huang, R., Chi, M., and Weng, T., "A study on electrical and thermal properties of conductive concrete", Computers and Concrete, Vol. 12, No. 3, 2013, pp. 337-349. https://doi.org/10.12989/cac.2013.12.3.337
  21. Sun, M., Li, Z., Mao, Q., and Shen, D., "Study on the hole conduction phenomenon in carbon fiber-reinforced concrete", Cement and Concrete Research, Vol. 28, No. 4, 1998, pp. 549-554. https://doi.org/10.1016/S0008-8846(98)00011-8
  22. Polder, R. B., "Test methods for on site measurement of resistivity of concrete-a RILEM TC-154 technical recommendation", Construction and Building Materials, Vol. 15, No. 2, 2001, pp. 125-131. https://doi.org/10.1016/S0950-0618(00)00061-1
  23. Fu, X., and Chung, D., "Improving the bond strength of concrete to reinforcement by adding methylcellulose to concrete", ACI Materials Journal, Vol. 95, 1998, pp. 601-608.
  24. Xu, Y., and Chung, D., "Cement-based materials improved by surface-treated admixtures", ACI Materials Journal, Vol. 97, No. 3, 2000, pp. 333-342.
  25. Yu, X., and Kwon, E. "A carbon nanotube/cement composite with piezoresistive properties", Smart Materials & Structures, Vol. 18, No. 5, 2009, pp. 1-5.
  26. Sengul, O., and Gjorv, O. E., "Electrical resistivity measurements for quality control during concrete construction", ACI Materials Journal, Vol. 105, No. 6, 2008, pp. 541-547.
  27. Zhang, X., Ding, X. Z., Ong, C. K., Tan, B. T. G., and Yang, J., "Dielectric and electrical properties of ordinary Portland cement and slag cement in the early hydration period", Journal of Materials Science, Vol. 31, No. 5, 1996, pp. 1345-1352. https://doi.org/10.1007/BF00353116
  28. Puertas, F., Santos, H., Palacios, M., and Martinez-Ramirez, S., "Polycarboxylate superplasticiser admixtures: effect on hydration, microstructure and rheological behaviour in cement pastes", Advances in Cement Research, Vol. 17, No. 2, 2005, pp. 77-89. https://doi.org/10.1680/adcr.2005.17.2.77
  29. Miao, C., Tian, Q., Ran, Q., and Liu, J., "Influence of polycarboxylate- based superplasticizer on the microstructure of concrete", 1st international conference on microstructure related durability of cementitious composites, Nanjing, China, 2008, pp. 13-15.