DOI QR코드

DOI QR Code

Structural Performance on the Self-centering Connections with Different Conditions of PT Strands

긴장재 적용조건에 따른 셀프센터링 접합부의 구조성능에 관한 연구

  • Jung, Mi Jin (Dept. of Architectural Engineering, Pusan National University) ;
  • Yoon, Sung Kee (Dept. of Architectural Engineering, Pusan National University)
  • Received : 2016.07.28
  • Accepted : 2016.11.21
  • Published : 2017.02.28

Abstract

In this study, cyclic loading analysis was conducted in order to understand the behavior of self-centering connections based on the number of PT(posttensioning) strands and initial posttensioning force. The initial posttensioning force needs to be above the yield moment of an angle for obtaining noticeable self-centering effect and it is proper that decompression moment ratio needs to be below 0.35 to minimize the residual displacement of major elements. As the number of PT strands increased, self-centering capacity also improved since initial posttensiong force in each PT strand has been decreased. It is also appropriate that initial posttensiong force needs to be less than or equal to 75% of yield strength of PT strands.

잔류변형이 효과적으로 제어되어 곧은 상태를 유지시켜주는 셀프센터링 접합부에 대하여 반복가력 해석을 시행했으며 초기 긴장력과 긴장재의 개수에 따른 구조적 거동을 분석하였다. 셀프센터링 효과를 발휘하기 위해서 초기 긴장력은 ㄱ형강의 항복모멘트보다 커야하며 주요부재의 손상을 최소화 하기 위해서 압축상쇄모멘트는 보의 전소성모멘트의 0.35이하로 하는 것이 타당하다고 판단된다. 또한 긴장재 개수가 증가할수록 단일 긴장재에 작용하는 초기 긴장력이 감소하여 셀프센터링 성능을 확보할 수 있으므로 긴장재의 초기 긴장응력은 항복응력의 75% 이하로 하는 것을 제안하였다.

Keywords

References

  1. James, M.R., Richard, S., Maria, M.G., and Chen, Z. (2001) Posttensioned Seismic-resistant Connections for Steel Frames, Journal of Structural Engineering, American Society of Civil Engineers, Vol.127, No.2, pp.113-121. https://doi.org/10.1061/(ASCE)0733-9445(2001)127:2(113)
  2. 양재근, 최정환, 김현광, 박재호(2011) 무보강 상․ 하부 ㄱ 형강 접합부의 소성휨모멘트 저항능력 예측을 위한 실험 및 해석적 연구, 한국강구조학회논문집, 한국강구조학회, 제23권, 제5호, pp.547-555. Yang, J.G., Choi, J.H., Kim, H.K., and Park, J.H. (2011) Experimental Tests and Analytical Study for the Prediction of the Plastic Moment Capacity of an Unstiffened Top and Seat Angle Connection, Journal of Korean Society of Steel Construction, KSSC, Vol.23, No.5, pp.547-555 (in Korean).
  3. Shen, J. and Astaneh-Asl, A. (2000) Hysteretic Model of Bolted-angle Connections, Journal of Constructional Steel Research, Elsevier, Vol.54, No.3, pp.317-343. https://doi.org/10.1016/S0143-974X(99)00070-X
  4. Ricles, J.M., Sause, R., Peng, S.W., and Lu, L.W. (2002) Experimental Evaluation of Earthquake Resistant Posttensioned Steel Connections, Journal of Structural Engineering, American Society of Civil Engineers, Vol.128, No.7, pp.850-859. https://doi.org/10.1061/(ASCE)0733-9445(2002)128:7(850)
  5. Constantin, C. (2002) Self-Centering Post-Tensioned Energy Dissipating(PTED) Steel Frames For Seismic Regions, Ph D. Dissertation, University of California, San Diego, USA.
  6. McKenna, F. Fenves, G.L., and Scott, M.H. (2000), Open System for Earthquake Engineering Simulation, University of California, Berkeley, California, USA.