DOI QR코드

DOI QR Code

Solution-based Synthesis of Two-dimensional Materials for Electrochemical Capacitors

전기화학 커패시터 응용을 위한 용액기반의 2차원 소재 제조

  • Choi, Bong Gill (Department of Chemical Engineering, Kangwon National University)
  • 최봉길 (강원대학교 화학공학과)
  • Received : 2017.04.29
  • Accepted : 2017.05.09
  • Published : 2017.06.10

Abstract

Two-dimensional (2D) materials, especially graphene and $MoS_2$ sheets, have gained much attention and shown great promise for the application in supercapacitors. To widely use the 2D materials for supercapacitors, highly efficient, low cost, and environmentally friendly synthetic methods for the preparation of 2D materials should be developed. Here, we will review recently developed solution-based processes for preparing 2D materials for supercapacitors. Chemical exfoliation-reduction, chemical intercalation, and liquid phase exfoliation methods will be introduced. Moreover, the electrochemical characteristics of graphene and $MoS_2$-based electrodes for supercapacitors are summarized. In addition to solution-based processes, other challenges and opportunities are discussed in terms of controlling nanosheet compositions, sizes, and thicknesses.

2차원 소재인 그래핀과 이황화몰리브덴($MoS_2$)은 슈퍼커패시터 응용을 위한 많은 관심과 무한한 가능성을 보여주었다. 2차원 소재의 슈퍼커패시터 응용성을 높이기 위해서는 2차원 소재 제조를 위한 효율적이면서 친환경적인 저비용 합성법이 개발되어야 한다. 본 논문에서 우리는 최근 개발된 슈퍼커패시터용 용액기반 2차원 소재 제조 기술을 논하고자 한다. 화학적 박리-환원, 화학적 삽입, 액상 박리 기술법들을 소개하고자 한다. 또한 그래핀과 이황화몰리브덴의 전기화학적 특성들을 정리하였다. 용액기반 공정들과 함께 개선되어야 할 나노시트들의 조성, 크기 및 두께 조절 기술개발을 다룬다.

Keywords

References

  1. F. Wang, S. Xiao, Y. Hou, C. Hu, L. Liu, and Y. Wu, Electrode materials for aqueous asymmetric supercapacitors, RSC Adv., 3, 13059-13084 (2013). https://doi.org/10.1039/c3ra23466e
  2. S. Zhang and N. Pan, Supercapacitors performance evaluation, Adv. Energy Mater., 5, 1401401-1401420 (2014).
  3. L. Li and Z. Wu, Advances and challenges for flexible energy storage and conversion devices and systems, Energy Environ. Sci., 7, 2101-2122 (2014). https://doi.org/10.1039/c4ee00318g
  4. K. Xie and B. Wei, Materials and structures for stretchable energy storage and conversion devices, Adv. Mater., 26, 3592-3617 (2014). https://doi.org/10.1002/adma.201305919
  5. Y. Gogotsi, Energy storage wrapped up, Nature, 509, 568-570 (2014). https://doi.org/10.1038/509568a
  6. J. Y. Q. Wang, T. Wei, and Z. Fan, Recent advances in design and fabrication of electrochemical supercapacitors with high energy densities, Adv. Energy Mater., 4, 1300816-1300859 (2014). https://doi.org/10.1002/aenm.201300816
  7. V. Augustyn, P. Simon, and B. Dunn, Pseudocapacitive oxide materials for high-rate electrochemical energy storage, Energy Environ. Sci., 7, 1597-1614 (2014). https://doi.org/10.1039/c3ee44164d
  8. X. Zhao, B. M. Sanchez, P. J. Dobson, and P. S. Grant, The role of nanomaterials in redox-based supercapacitors for next generation energy storage devices, Nanoscale, 3, 839-855 (2011). https://doi.org/10.1039/c0nr00594k
  9. Y. Yang, G. Ruan, C. Xiang, G. Wang, and J. M. Tour, Flexible three-dimensional nanoporous metal-based energy devices, J. Am. Chem. Soc., 136, 6187-6190 (2014). https://doi.org/10.1021/ja501247f
  10. P. Simon and Y. Gogotsi, Materials for electrochemical capacitors, Nat. Mater., 7, 845-854 (2008). https://doi.org/10.1038/nmat2297
  11. B. G. Choi, Y. S. Huh, W. H. Hong, D. Erickson, and H. S. Park, Electroactive nanoparticle directed assembly of functionalized graphene nanosheets into hierarchical structures with hybrid compositions for flexible supercapacitors, Nanoscale, 5, 3976-3981 (2013). https://doi.org/10.1039/c3nr33674c
  12. B. G. Choi, M. Yang, W. H. Hong, J. W. Choi, and Y. S. Huh, 3D macroporous graphene frameworks for supercapacitors with high energy and power densities, ACS Nano, 6, 4020-4028 (2012). https://doi.org/10.1021/nn3003345
  13. T. Zhai, F. Wang, M. Yu, S. Xie, C. Liang, C. Li, F. Xiao, R. Tang, Q. Wu, X. Lu, and Y. Tong, 3D $MnO_2$-graphene composites with large areal capacitance for high-performance asymmetric supercapacitors, Nanoscale, 5, 6790-6796 (2013). https://doi.org/10.1039/c3nr01589k
  14. Q. Wang, J. Yan, and Z. Fan, Carbon materials for high volumetric performance supercapacitors: Design, progress, challenges and opportunities, Energy Environ. Sci., 9, 729-762 (2016). https://doi.org/10.1039/C5EE03109E
  15. X. Cao, C. Tan, X. Zhang, W. Zhao, and H. Zhang, Solution-processed two-dimensional metal dichalcogenide-based nanomaterials for energy storage and conversion, Adv. Mater., 28, 6167-6196 (2016). https://doi.org/10.1002/adma.201504833
  16. B. Mendoza-Sanchez and Y. Gogotsi, Synthesis of two-dimensional materials for capacitive energy storage, Adv. Mater., 28, 6104-6135 (2016). https://doi.org/10.1002/adma.201506133
  17. G. Zhang, H. Liu, J. Qu, and J. Li, Two-dimensional layered $MoS_2$: rational design, properties and electrochemical applications, Energy Environ. Sci., 9, 1190-1209 (2016). https://doi.org/10.1039/C5EE03761A
  18. M. Acerce, D. Voiry, and M. Chhowalla, Metallic 1T phase $MoS_2$ nanosheets as supercapacitor electrode materials, Nat. Nanotechnol., 10, 313-317 (2015). https://doi.org/10.1038/nnano.2015.40
  19. J. Kang, V. K. Sangwan, J. D. Wood, and M. C. Hersam, Solution-based processing of monodisperse two-dimensional nanomaterials, Acc. Chem. Res., 50, 943-951 (2017). https://doi.org/10.1021/acs.accounts.6b00643
  20. M. D. Stoller, S. Park, Y. Zhu, J. An, and R. S. Ruoff, Graphene-based ultracapacitors, Nano Lett., 8, 3498-3502 (2008). https://doi.org/10.1021/nl802558y
  21. Y. Huang, J. Liang, and Y. Chen, An overview of the applications of graphen-based materials in supercapacitors, Small, 4, 1805-1834 (2012).
  22. A. Ambrosi, C. K. Chua, A. Bonanni, and M. Pumera, Electrochemistry of graphene and related materials, Chem. Rev., 114, 7150-7188 (2014). https://doi.org/10.1021/cr500023c
  23. W. S. Hummers and R. E. Offeman, Preparation of graphitic oxide, J. Am. Chem. Soc., 80, 1339-1339 (1958). https://doi.org/10.1021/ja01539a017
  24. D. Chen, H. Feng, and J. Li, Graphene oxide: preparation, functionalization, and electrochemical applications, Chem. Rev., 112, 6027-6053 (2012). https://doi.org/10.1021/cr300115g
  25. A. Ambrosi, C. K. Chua, A. Bonanni, and M. Pumera, Electrochemistry of graphene and related materials, Chem. Rev., 114, 7150-7188 (2014). https://doi.org/10.1021/cr500023c
  26. D. Li, M. B. Muller, S. Gilje, R. B. Kaner, and G. G. Wallace, Processable aqueous dispersions of graphene nanosheets, Nat. Nanotechnol., 3, 101-105 (2008). https://doi.org/10.1038/nnano.2007.451
  27. I. K. Moon, J. Lee, R. S. Ruoff, and H. Lee, Reduced graphene oxide by chemical graphitization, Nat. Commun., 1, 73-79 (2010).
  28. S.-Z. Zu and B.-H. Han, Aqueous dispersion of graphene sheets stabilized by pluronic copolymers: formation of supramolecular hydrogel, J. Phys. Chem. C, 113, 13651-13657 (2009).
  29. Y. Xu, Z. Lin, X. Huang, Y. Liu, Y. Huang, and X. Duan, Felxible solid-state supercapacitors based on three-dimensional graphene hydrogel films, ACS Nano, 7, 4042-4049 (2013). https://doi.org/10.1021/nn4000836
  30. Y. Xu, K. Shen, C. Li, and G. Shi, Self-assembled graphene hydrogel via a one-step hydrothermal process, ACS Nano, 7, 4324-4330 (2010).
  31. M. Yang, K. G. Lee, S. J. Lee, S. B. Lee, Y.-K. Han, and B. G. Choi, Three-dimensional expanded graphene-metal oxide film via solid state microwave irradiation for aqueous asymmetric supercapacitors, ACS Appl. Mater. Interfaces, 7, 22364-22371 (2015). https://doi.org/10.1021/acsami.5b06187
  32. M. Yang and B. G. Choi, Rapid one-step synthesis of conductive and porous $MnO_2$/graphene nanocomposite for high performance supercapacitors, J. Electroanal. Chem., 776, 134-138 (2016). https://doi.org/10.1016/j.jelechem.2016.07.013
  33. C. Li and G. Shi, Three-dimensional graphene architectures, Nanoscale, 4, 5549-5563 (2012). https://doi.org/10.1039/c2nr31467c
  34. X. Cao, Z. Yin, and H. Zhang, Three-dimensional graphene materials: preparation, structures and application in supercapacitors, Energy Environ. Sci., 7, 1850-1865 (2014). https://doi.org/10.1039/C4EE00050A
  35. Y. Zhu, S. Murali, M. D. Stoller, K. J. Ganesh, W. Cai, P. J. Ferreira, A. Pirkle, R. M. Wallace, K. A. Cychosz, M. Thommes, D. Su, E. A. Stach, and R. S. Ruoff, Carbon-based supercapacitors produced by activation of graphene, Science, 332, 1537-1541 (2011). https://doi.org/10.1126/science.1200770
  36. Z. Wen, X. Wang, S. Mao, Z. Bo, H. Kim, S. Cui, G. Lu, X. Feng, and J. Chen, Crumpled nitrogen-doped graphene nanosheets with ultrahigh pore volume for high-performance supercapacitor, Adv. Mater., 24, 5610-5616 (2012). https://doi.org/10.1002/adma.201201920
  37. Z.-S. Wu, K. Parvez, A. Winter, H. Vieker, X. Liu, S. Han, A. Turchanin, X. Feng, and K. Mullen, Layer-by-layer assembled heteroatom-doped graphene films with ultrahigh volumetric capacitance and rate capability for micro-supercapacitors, Adv. Mater., 26, 4552-4558 (2014). https://doi.org/10.1002/adma.201401228
  38. J. Feng, X. Sun, C. Wu, L. Peng, C. Lin, S. Hu, J. Yang, and Y. Xie, Metallic few-layered VS2 ultrathin nanosheets: high two-dimensional conductivity for in-plane supercapacitors, J. Am. Chem. Soc., 133, 17832-17838 (2011). https://doi.org/10.1021/ja207176c
  39. Y.-C. Lin, D. O. Dumcenco, Y.-Sh. Huang, and K. Suenaga, Atomic mechanism of the semiconducting-to-metallic phase transition in single-layered $MoS_2$, Nat. Nanotechnol., 9, 391-395 (2014). https://doi.org/10.1038/nnano.2014.64
  40. D. Voiry, A. Mohite, and M. Chhowalla, Phase engineering of transition metal dichalcogenides, Chem. Soc. Rev., 44, 2702-2712 (2015). https://doi.org/10.1039/C5CS00151J
  41. V. Nicolosi, M. Chhowalla, M. G. Kanatzidis, M. S. Strano, and J. N. Coleman, Liquid exfoliation of layered materials, Science, 340, 6139-6157 (2013).
  42. J. Shen, Y. He, J. Wu, C. Gao, K. Keyshar, X. Zhang, Y. Yang, M. Ye, R. Vajtai, J. Lou, and P. M. Ajayan, Liquid phase exfoliation of two-dimensional materials by directly probing and matching surface tension components, Nano Lett., 15, 5449-5454 (2015). https://doi.org/10.1021/acs.nanolett.5b01842
  43. I. Y. Jeon, Y. R. Shin, G. J. Sohn, H. J. Choi, S. Y. Bae, J. Mahmood, S. M. Jung, J. M. Seo, M. J. Kim, D. W. Chang, L. M. Dai, and J. B. Baek, Edge-carboxylated graphene nanosheets via ball milling, Proc. Natl. Acad. Sci. U. S. A., 109, 5588-5593 (2012). https://doi.org/10.1073/pnas.1116897109
  44. M. Yang, S.-K. Hwang, J.-M. Jeong, Y. S. Huh, and B. G. Choi, Nitrogen-doped carbon-coated molybdenum disulfide nanosheets for high-performance supercapacitor, Synth. Met., 209, 528-533 (2015). https://doi.org/10.1016/j.synthmet.2015.09.007
  45. M. Yang, J.-M. Jeong, Y. S. Huh, and B. G. Choi, High-performance supercapacitor based on three-dimensional $MoS_2$/graphene aerogel composites, Compos. Sci. Technol., 121, 123-128 (2015). https://doi.org/10.1016/j.compscitech.2015.11.004
  46. C. Liujun, S. Yang, W. Gao, Z. Liu, Y. Gong, L. Ma, G. Shi, S. Lei, Y. Zhang, S. Zhang, R. Vajtai, and P. M. Ajayan, Direct laser-patterned micro-supercapacitors from paintable $MoS_2$ films, Small, 9, 2905-2910 (2013). https://doi.org/10.1002/smll.201203164
  47. Z.-S. Wu, A. Winter, L. Chen, Y. Sun, A. Turchanin, X. Feng, and K. Mullen, Three-dimensional nitrogen and boron co-doped graphene for high-performance all-solid-state supercapacitors, Adv. Mater., 24, 5130-5135 (2012). https://doi.org/10.1002/adma.201201948

Cited by

  1. Effect of electric field on two-dimensional honeycomb structures from group (III–V) vol.162, pp.None, 2022, https://doi.org/10.1016/j.jpcs.2021.110507