DOI QR코드

DOI QR Code

Analysis of Polymer Characteristics Using Matrix-assisted Laser Desorption/Ionization Time-of-flight Mass Spectrometry

말디토프 질량분석을 이용한 고분자의 특성분석

  • Kang, Min-Jung (Molecular Recognition Research Center, Materials and Life Science Division, Korea Institute of Science and Technology) ;
  • Seong, Yunseo (Molecular Recognition Research Center, Materials and Life Science Division, Korea Institute of Science and Technology) ;
  • Kim, Moon-Ju (Department of Materials Science & Engineering, Yonsei University) ;
  • Kim, Myung Soo (Molecular Recognition Research Center, Materials and Life Science Division, Korea Institute of Science and Technology) ;
  • Pyun, Jae-Chul (Department of Materials Science & Engineering, Yonsei University)
  • 강민정 (한국과학기술연구원 미래융합기술연구본부, 분자인식연구센터) ;
  • 성윤서 (한국과학기술연구원 미래융합기술연구본부, 분자인식연구센터) ;
  • 김문주 (연세대학교 신소재공학과) ;
  • 김명수 (한국과학기술연구원 미래융합기술연구본부, 분자인식연구센터) ;
  • 변재철 (연세대학교 신소재공학과)
  • Received : 2017.03.02
  • Accepted : 2017.03.22
  • Published : 2017.06.10

Abstract

The application of mass spectrometry to polymer science has rapidly increased since the development of MALDI-TOF MS. This review summarizes current polymer analysis methods using MALDI-TOF MS, which has been extensively applied to analyze the average molecular weight of biopolymers and synthetic polymers. Polymer sequences have also been analyzed to reveal the structures and composition of monomers. In addition, the analysis of unknown end-groups and the determination of polymer concentrations are very important applications. Hyphenated techniques using MALDI-tandem MS have been used for the analysis of fragmentation patterns and end-groups, and also the combination of SEC and MALDI-TOF MS techniques is recommended for the analysis of complex polymers. Moreover, MALDI-TOF MS has been utilized for the observation of polymer degradation. Ion mobility MS, TOF-SIMS, and MALDI-TOF-imaging are also emerging technologies for polymer characterization because of their ability to automatically fractionate and localize polymer samples. The determination of polymer characteristics and their relation to the material properties is one of the most important demands for polymer scientists; the development of software and instrument for higher molecular mass range (> 100 kD) will increase the applications of MALDI-TOF MS for polymer scientists.

최근에, 질량분석기술의 폴리머 분석에의 응용은 MALDI-TOF MS 개발 이후 급속도로 발전하였다. 이 리뷰 논문은 현재까지 연구된 MALDI-TOF MS의 폴리머 특성분석에의 응용에 관한 최신 논문을 정리하였다. MALDI-TOF MS는 바이오 폴리머와, 합성 폴리머의 평균분자량 분석, 폴리머의 시퀀스 분석을 통한 구조의 해석, 모노머의 조성분석에까지 이용되고 있다. 엔드그룹의 특성과 농도를 분석하는 연구도 많이 진행되었고, 복잡한 폴리머의 분자량의 분석에는 SEC와 MALDI-TOF MS를 연결한 분석법을 추천한다. MALDI에 tandem MS를 결합한 분석기술이나, 이온 모빌리티를 응용한 질량분석기, TOF-SIMS, MALDI-TOF-Imaging 기술도 급격히 발전하고 있으며, 이의 폴리머 특성분석에의 응용은 별도의 분리기술이 필요 없어 앞으로 더 많이 이용될 것으로 생각된다. 분자량, 시퀀스, 그리고 모노머의 조성을 정확하게 계산해주는 소프트웨어와 고분자량(> 100 kDa)의 분석을 가능하게 해주는 기술이 개발된다면, 폴리머를 연구하는 과학자들에게 MALDI-TOF MS의 이용은 문제점을 해결하고, 목적하는 폴리머를 합성하는 데 중요한 수단이 될 것이다.

Keywords

References

  1. G. Montaudo, F. Samperi, and M. S. Montaudo, Characterization of synthetic polymers by MALDI-MS, Prog. Polym. Sci., 31, 277-357 (2006). https://doi.org/10.1016/j.progpolymsci.2005.12.001
  2. C. Wesdemiotis, N. Solak, M. J. Polce, D. E. Dabney, K. Chaicharoen, and B. C. Katzenmeyer, Fragmentation pathways of polymer ions, Mass Spectrom. Rev., 30, 523-559 (2011). https://doi.org/10.1002/mas.20282
  3. D. Kou, G. Manius, S. Zhan, and H. P. Chokshi, Size exclusion chromatography with Corona charged aerosol detector for the analysis of polyethylene glycol polymer, J. Chromatogr. A, 1216, 5424-5428 (2009). https://doi.org/10.1016/j.chroma.2009.05.043
  4. P. R. Z. Grubisic and H. Benoit, A universal calibration for gel permeation chromatography, J. Polym. Sci. B, 5, 753-759 (1967). https://doi.org/10.1002/pol.1967.110050903
  5. S. R. Tatro, G. R. Baker, R. Fleming, and J. P. Harmon, Matrix-assisted laser desorption/ionization (MALDI) mass spectrometry: determining Mark-Houwink-Sakurada parameters and analyzing the breadth of polymer molecular weight distributions, Polymer, 43, 2329-2335 (2002). https://doi.org/10.1016/S0032-3861(02)00008-3
  6. N. O. Pretorius, K. Rode, J. M. Simpson, and H. Pasch, Analysis of complex phthalic acid based polyesters by the combination of size exclusion chromatography and matrix-assisted laser desorption/ ionization mass spectrometry, Anal. Chim. Acta, 808, 94-103 (2014). https://doi.org/10.1016/j.aca.2013.07.030
  7. B. K. Myers, B. Zhang, J. E. Lapucha, and S. M. Grayson, The characterization of dendronized poly(ethylene glycol)s and poly(ethylene glycol) multi-arm stars using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry, Anal. Chim. Acta, 808, 175-189 (2014). https://doi.org/10.1016/j.aca.2013.09.038
  8. F. Karaca, M. Millan, M. Behrouzi, A. A. Herod, and R. Kandiyoti, The size exclusion chromatography calibration of 'Mixed-A' and 'Mixed-D' columns using various polymers and compounds: An application to coal-derived materials, Anal. Chim. Acta, 547, 78-82 (2005). https://doi.org/10.1016/j.aca.2005.03.003
  9. W. Fan, X. Fan, W. Tian, X. Zhu, and W. Zhang, Differential analysis on precise determination of molecular weight of triblock copolymer using SEC/MALS and MALDI-TOF MS, Polym. Test., 40, 116-123 (2014). https://doi.org/10.1016/j.polymertesting.2014.08.014
  10. T. W. D. Chan, P. K. Chan, and K. Y. Tang, Determination of molecular weight profile for a bioactive ${\beta}$-(1 ${\rightarrow}$ 3) polysaccharides (Curdlan), Anal. Chim. Acta, 556, 226-236 (2006). https://doi.org/10.1016/j.aca.2005.08.059
  11. M. Janco, J. N. 4th Alexander, E. S. Bouvier, and D. Morrison, Ultra-high performance size-exclusion chromatography of synthetic polymers: demonstration of capability, J. Sep. Sci., 36, 2718-2727 (2013). https://doi.org/10.1002/jssc.201300444
  12. E. Tisdale and C. Wilkins, Method development for compositional analysis of low molecular weight poly(vinyl acetate) by matrix-assisted/ laser desorption-mass spectrometry and its application to analysis of chewing gum, Anal. Chim. Acta, 820, 92-103 (2014). https://doi.org/10.1016/j.aca.2014.02.042
  13. B. Zhang, H. Zhang, B. K. Myers, R. Elupula, J. Jayawickramarajah, and S. M. Grayson, Determination of polyethylene glycol end group functionalities by combination of selective reactions and characterization by matrix assisted laser desorption/ ionization time-of-flight mass spectrometry, Anal. Chim. Acta, 816, 28-40 (2014). https://doi.org/10.1016/j.aca.2014.01.039
  14. G. Adamus, P. Rizzarelli, M. S. Montaudo, M. Kowalczuk, and G. Montaudo, Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry with size-exclusion chromatographic fractionation for structural characterization of synthetic aliphatic copolyesters, Rapid Commun. Mass Spectrom., 20, 804-814 (2006). https://doi.org/10.1002/rcm.2365
  15. J. G. Kim, J. H. Kim, B.-J. Song, C. W. Lee, and J. S. Im, Synthesis and its characterization of pitch from pyrolyzed fuel oil (PFO), J. Ind. Eng. Chem., 36, 293-297 (2016). https://doi.org/10.1016/j.jiec.2016.02.014
  16. J.-Y. Choi, D.-I. Lee, C.-J. Kim, C.-H. Lee, and I.-S. Ahn, Synthesis of PEG hydrogel with dityrosine for multi-functionality and pH-dependent fluorescence, J. Ind. Eng. Chem., 18, 611-616 (2012). https://doi.org/10.1016/j.jiec.2011.11.052
  17. A. P. Kafka, T. Kleffmann, T. Rades, and A. McDowell, The application of MALDI TOF MS in biopharmaceutical research, Int. J. Pharm., 417, 70-82 (2011). https://doi.org/10.1016/j.ijpharm.2010.12.010
  18. M. Karas and F. Hillenkamp, Laser desorption ionization of proteins with molecular masses exceeding 10,000 daltons, Anal. Chem., 60, 2299-2301 (1988). https://doi.org/10.1021/ac00171a028
  19. T. Gruendling, S. Weidner, J. Falkenhagen, and C. Barner-Kowollik, Mass spectrometry in polymer chemistry: a state-ofthe-art up-date, Polym. Chem., 1, 599-617 (2010). https://doi.org/10.1039/b9py00347a
  20. F. Hillenkamp, M. Karas, R. C. Beavis, and B. T. Chait, Matrix-assisted laser desorption/ionization mass spectrometry of biopolymers, Anal. Chem., 63, 1193a-1203a (1991). https://doi.org/10.1021/ac00024a716
  21. C. B. Lietz, A. L. Richards, D. D. Marshall, Y. Ren, and S. Trimpin, Matrix-assisted inlet ionization and solvent-free gas-phase separation using ion mobility spectrometry for imaging and electron transfer dissociation mass spectrometry of polymers. In: C. B. Kowollik, T. Gruendling, J. Falkenhagen and S. Weidner (eds.), Mass Spectrometry in Polymer Chemistry, 85-118, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany (2011).
  22. P. Rizzarelli and C. Puglisi, Structural characterization of synthetic poly(ester amide) from sebacic acid and 4-amino-1-butanol by matrix-assisted laser desorption ionization time-of-flight/time-of-flight tandem mass spectrometry, Rapid Commun. Mass Spectrom., 22, 739-754 (2008). https://doi.org/10.1002/rcm.3417
  23. H. Sato, S. Nakamura, K. Teramoto, and T. Sato, Structural characterization of polymers by MALDI spiral-TOF mass spectrometry combined with Kendrick mass defect analysis, J. Am. Soc. Mass Spectrom., 25, 1346-1355 (2014). https://doi.org/10.1007/s13361-014-0915-y
  24. S. Hosseini and S. O. Martinez-Chapa, Principles and mechanism of MALDI-ToF-MS analysis. In: S. Hosseini and S. O. Martinez-Xhapa (eds.), Fundamentals of MALDI-ToF-MS Analysis, 1-19, Springer Singapore, Singapore (2017).
  25. M. Lopez-Garcia, M. S. D. Garcia, J. M. L. Vilarino, and M. V. G. Rodriguez, MALDI-TOF to compare polysaccharide profiles from commercial health supplements of different mushroom species, Food Chem., 199, 597-604 (2016). https://doi.org/10.1016/j.foodchem.2015.12.016
  26. O. Y. Abdelaziz, D. P. Brink, J. Prothmann, K. Ravi, M. Sun, J. Garcia-Hidalgo, M. Sandahl, C. P. Hulteberg, C. Turner, G. Liden, and M. F. Gorwa-Grauslund, Biological valorization of low molecular weight lignin, Biotechnol. Adv., 34, 1318-1346 (2016). https://doi.org/10.1016/j.biotechadv.2016.10.001
  27. A. M. Spring, D. Maeda, M. Ozawa, K. Odoi, F. Qiu, K. Yamamoto, and S. Yokoyama, An analysis of the structural, thermal and optical characteristics as well as the electrical resistivity of tert-butyldiphenylsilyl substituted poly(norbornene-dicarboximide) s, Polymer, 56, 189-198 (2015). https://doi.org/10.1016/j.polymer.2014.11.043
  28. R. Wang, W. Liu, L. Fang, and C. Xu, Synthesis, characterization, and properties of novel phenylene-silazane-acetylene polymers, Polymer, 51, 5970-5976 (2010). https://doi.org/10.1016/j.polymer.2010.09.047
  29. H. Kim, S. D. Dindulkar, D. Jeong, S. Park, B.-H. Jun, E. Cho, and S. Jung, A synthetic encapsulating emulsifier using complex-forming pentacosadiynoyl cyclosophoraoses (cyclic ${\beta}$-(1, 2)-d-glucan), J. Ind. Eng. Chem., 44, 195-203 (2016). https://doi.org/10.1016/j.jiec.2016.08.032
  30. A. P. Gies, S. T. Ellison, S. M. Stow, and D. M. Hercules, Matrix-assisted laser desorption/ionization-time-of-flight/time-of-flight collision-induced dissociation study of poly(p-phenylenediamine terephthalamide) fragmentation reactions, Anal. Chim. Acta, 808, 124-143 (2014). https://doi.org/10.1016/j.aca.2013.09.007
  31. K. Nishimori, M. Ouchi, and M. Sawamoto, Sequence analysis for alternating copolymers by MALDI-TOF-MS: Importance of initiator selectivity for comonomer pair, Macromol. Rapid Commun., 37, 1414-1420 (2016). https://doi.org/10.1002/marc.201600251
  32. A. M. Yol, J. Janoski, R. P. Quirk, and C. Wesdemiotis, Sequence analysis of styrenic copolymers by tandem mass spectrometry, Anal. Chem., 86, 9576-9582 (2014). https://doi.org/10.1021/ac5019815
  33. P. Rizzarelli, C. Puglisi, and G. Montaudo, Sequence determination in aliphatic poly(ester amide)s by matrix-assisted laser desorption/ ionization time-of-flight and time-of-flight/time-of-flight tandem mass spectrometry, Rapid Commun. Mass Spectrom., 19, 2407-2418 (2005). https://doi.org/10.1002/rcm.2075
  34. S. G. Sreerama, R. Elupula, B. A. Laurent, B. Zhang, and S. M. Grayson, Use of MALDI-ToF MS to elucidate the structure of oligomeric impurities formed during 'click' cyclization of polystyrene, React. Funct. Polym., 80, 83-94 (2014). https://doi.org/10.1016/j.reactfunctpolym.2014.01.013
  35. A. M. Yol, D. E. Dabney, S. F. Wang, B. A. Laurent, M. D. Foster, R. P. Quirk, S. M. Grayson, and C. Wesdemiotis, Differentiation of linear and cyclic polymer architectures by MALDI tandem mass spectrometry (MALDI-MS2), J. Am. Soc. Mass Spectrom., 24, 74-82 (2013). https://doi.org/10.1007/s13361-012-0497-5
  36. A. T. Jackson, H. T. Yates, J. H. Scrivens, M. R. Green, and R. H. Bateman, Utilizing matrix-assisted laser desorption/ionization-collision induced dissociation for the generation of structural information from poly(alkyl methacrylate)s, J. Am. Soc. Mass Spectrom., 8, 1206-1213 (1997). https://doi.org/10.1016/S1044-0305(97)00221-3
  37. S. M. Miladinovic, C. J. Kaeser, M. M. Knust, and C. L. Wilkins, Tandem Fourier transform mass spectrometry of block and random copolymers, Int. J. Mass spectrom., 301, 184-194 (2011). https://doi.org/10.1016/j.ijms.2010.08.028
  38. D.-I. Lee, C.-J. Kim, C.-H. Lee, and I.-S. Ahn, Synthesis of a fluorescent and star-shaped 4-arm PEG with different functional groups at its ends, J. Ind. Eng. Chem., 18, 1186-1190 (2012). https://doi.org/10.1016/j.jiec.2012.01.010
  39. M. Florczak, A. Michalski, A. Kacprzak, M. Brzezinski, T. Biedron, A. Pająk, P. Kubisa, and T. Biela, MALDI-TOF analysis of lactide oligomers with functional end groups, React. Funct. Polym., 104, 71-77 (2016). https://doi.org/10.1016/j.reactfunctpolym.2016.05.010
  40. Y. Li, J. N. Hoskins, S. G. Sreerama, and S. M. Grayson, MALDI-TOF mass spectral characterization of polymers containing an azide group: Evidence of metastable ions, Macromolecules, 43, 6225-6228 (2010). https://doi.org/10.1021/ma100599n
  41. L. Y. Kong, B. G. Su, Z. B. Bao, H. B. Xing, Y. W. Yang, and Q. L. Ren, Direct quantification of mono- and di-d-${\alpha}$-tocopherol polyethylene glycol 1000 succinate by high performance liquid chromatography, J. Chromatogr. A, 1218, 8664-8671 (2011). https://doi.org/10.1016/j.chroma.2011.10.020
  42. L. Prokai, Electrospray ionization (ESI-MS) and on-line liquid chromatography/mass spectrometry (LC/MS). In: G. Montaudo and R. P. Lattimer (eds.). Mass Spectrometry of Polymers, 149-175, CRC Press, Boca Raton, FL, USA (2001).
  43. J. B. Fenn, Electrospray wings for molecular elephants (Nobel lecture), Angew. Chem. Int. Ed., 42, 3871-3894 (2003). https://doi.org/10.1002/anie.200300605
  44. Z. Lin, D. Wang, A. Peng, and Z. Huang, HPLC determination of domoic acid in shellfish based on magnetic molecularly imprinting polymers, Int. J. Polym. Anal. Charact., 22, 202-209 (2017). https://doi.org/10.1080/1023666X.2016.1276713
  45. Z. Fekete, T. Rofusz, V. Angyal, P. Szabo-Revesz, and Z. Aigner, Gas chromatographic-mass spectrometric analysis and subsequent quality improvement of plastic infusion packaging materials, J. Pharm. Biomed. Anal., 97, 111-115 (2014). https://doi.org/10.1016/j.jpba.2014.04.031
  46. G. Mitchell, C. Higgitt, and L. T. Gibson, Emissions from polymeric materials: Characterised by thermal desorption-gas chromatography, Polym. Degrad. Stab., 107, 328-340 (2014). https://doi.org/10.1016/j.polymdegradstab.2013.12.003
  47. V. G. Zaikin, R. S. Borisov, N. Y. Polovkov, D. I. Zhilyaev, A. A. Vinogradov, and A. V. Ivanyuk, Characterization of low-molecular weight iodine-terminated polyethylenes by gas chromatography/ mass spectrometry and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry with the use of derivatization, Eur. J. Mass Spectrom. (Chichester), 19, 163-173 (2013). https://doi.org/10.1255/ejms.1223
  48. V. Becerra, J. Odermatt, and M. Nopens, Identification and classification of glucose-based polysaccharides by applying Py-GC/MS and SIMCA, J. Anal. Appl. Pyrolysis, 103, 42-51 (2013). https://doi.org/10.1016/j.jaap.2012.12.018
  49. J. Falkenhagen and S. Weidner, Hyphenated techniques. In: C. B. Kowollik, T. Gruendling, J. Falkenhagen and S. Weidner (eds.), Mass Spectrometry in Polymer Chemistry, 209-235, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany (2011).
  50. S. Crotty, S. Gerislioglu, K. J. Endres, C. Wesdemiotis, and U. S. Schubert, Polymer architectures via mass spectrometry and hyphenated techniques: A review, Anal. Chim. Acta, 932, 1-21 (2016). https://doi.org/10.1016/j.aca.2016.05.024
  51. E. Altuntas and U. S. Schubert, "Polymeromics": Mass spectrometry based strategies in polymer science toward complete sequencing approaches: A review, Anal. Chim. Acta, 808, 56-69 (2014). https://doi.org/10.1016/j.aca.2013.10.027
  52. K. Tanaka, H. Waki, Y. Ido, S. Akita, Y. Yoshida, T. Yoshida, and T. Matsuo, Protein and polymer analyses up to m/z 100 000 by laser ionization time-of-flight mass spectrometry, Rapid Commun. Mass Spectrom., 2, 151-153 (1988). https://doi.org/10.1002/rcm.1290020802
  53. A. M. Spring, D. Maeda, M. Ozawa, K. Odoi, F. Qiu, K. Yamamoto, and S. Yokoyama, An analysis of the structural, thermal and optical characteristics as well as the electrical resistivity of tert-butyldiphenylsilyl substituted poly(norbornene-dicarboximide) s, Polymer, 56, 189-198 (2015). https://doi.org/10.1016/j.polymer.2014.11.043
  54. W.-C. Oh and W.-B. Ko, Characterization and photonic properties for the Pt-fullerene/$TiO_2$ composites derived from titanium (IV) n-butoxide and C60, J. Ind. Eng. Chem., 15, 791-797 (2009). https://doi.org/10.1016/j.jiec.2009.09.001
  55. S. Zappia, R. Mendichi, S. Battiato, G. Scavia, R. Mastria, F. Samperi, and S. Destri, Characterization of amphiphilic block-copolymers constituted of a low band gap rigid segment (PCPDTBT) and P4VP based coil block synthesized by two different strategies, Polymer, 80, 245-258 (2015). https://doi.org/10.1016/j.polymer.2015.10.062
  56. A. Marie, F. Fournier, and J. C. Tabet, Characterization of synthetic polymers by MALDI-TOF/MS: investigation into new methods of sample target preparation and consequence on mass spectrum finger print, Anal. Chem., 72, 5106-5114 (2000). https://doi.org/10.1021/ac000124u
  57. H. Brandt, T. Ehmann, and M. Otto, Toward prediction: using chemometrics for the optimization of sample preparation in MALDI-TOF MS of synthetic polymers, Anal. Chem., 82, 8169-8175 (2010). https://doi.org/10.1021/ac101526w
  58. A. P. Gies, Ionization techniques for polymer mass spectrometry. In: C. B. Kowollik, T. Gruendling, J. Falkenhagen and S. Weidner (eds.), Mass Spectrometry in Polymer Chemistry, 33-56, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany (2011).
  59. X. Yang, T. Wu, B. Liu, Y. Du, H. Li, S. Zhao, and Y. Lu, Matrix selection for polymer guanidine analysis by MALDI-TOF MS, Int. J. Mass Spectrom., 356, 1-6 (2013). https://doi.org/10.1016/j.ijms.2013.09.010
  60. E. Altuntas, C. Weber, K. Kempe, and U. S. Schubert, Comparison of ESI, APCI and MALDI for the (tandem) mass analysis of poly(2-ethyl-2-oxazoline)s with various end-groups, Eur. Polym. J., 49, 2172-2185 (2013). https://doi.org/10.1016/j.eurpolymj.2013.02.008
  61. S. J. Wetzel, C. M. Guttman, K. M. Flynn, J. J. Filliben, Significant parameters in the optimization of MALDI-TOF-MS for synthetic polymers, J. Am. Soc. Mass. Spectrom., 17, 246-252 (2006). https://doi.org/10.1016/j.jasms.2005.11.007
  62. C. Chendo, M. Rollet, T. N. T. Phan, S. Viel, D. Gigmes, and L. Charles, Successful MALDI mass spectrometry of poly(4-vinylpyridine) using a solvent-free sample preparation, Int. J. Mass Spectrom., 376, 90-96 (2015). https://doi.org/10.1016/j.ijms.2014.12.004
  63. T. Wu, H. Hu, D. Jiang, Y. Du, W. Jiang, and H. Wang, Identification of two polyamides (PA11 and PA1012) using pyrolysis-GC/MS and MALDI-TOF MS, Polym. Test., 32, 426-431 (2013). https://doi.org/10.1016/j.polymertesting.2012.12.004
  64. E. Altuntas, C. Weber, and U. S. Schubert, Detailed characterization of poly(2-ethyl-2oxazoline)s by energy variable collision-induced dissociation study, Rapid Commun. Mass Spectrom., 27, 1095-1100 (2013). https://doi.org/10.1002/rcm.6542
  65. E. Altuntas, C. Weber, and U. S. Schubert, Detailed characterization of poly(2-ethyl-2oxazoline)s by energy variable collision-induced dissociation study, Rapid Commun. Mass Spectrom., 27, 1095-1100 (2013). https://doi.org/10.1002/rcm.6542
  66. K.-J. Liu, NMR studies of polymer solutions. VI. Molecular weight determination of poly(ethylene glycol) by NMR analysis of near-end groups, Die Makromolekulare Chemie, 116, 146-151 (1968). https://doi.org/10.1002/macp.1968.021160115
  67. D. A. L. Otte, D. E. Borchmann, C. Lin, M. Weck, and K. A. Woerpel, (13)C NMR spectroscopy for the quantitative determination of compound ratios and polymer end groups, Org. Lett., 16, 1566-1569 (2014). https://doi.org/10.1021/ol403776k
  68. J. Edward Semple, B. Sullivan, T. Vojkovsky, and K. N. Sill, Synthesis and facile end-group quantification of functionalized PEG azides, J. Polym. Sci. A, 54, 2888-2895 (2016). https://doi.org/10.1002/pola.28174
  69. P. Rizzarelli and S. Carroccio, Modern mass spectrometry in the characterization and degradation of biodegradable polymers, Anal. Chim. Acta, 808, 18-43 (2014). https://doi.org/10.1016/j.aca.2013.11.001
  70. P. Rizzarelli, M. Cirica, G. Pastorelli, C. Puglisi, and G. Valenti, Aliphatic poly(ester amide)s from sebacic acid and aminoalcohols of different chain length: Synthesis, characterization and soil burial degradation, Polym. Degrad. Stab., 121, 90-99 (2015). https://doi.org/10.1016/j.polymdegradstab.2015.08.010
  71. E. Cossoul, M. Hubert-Roux, M. Sebban, F. Churlaud, H. Oulyadi, and C. Afonso, Evaluation of atmospheric solid analysis probe ionization coupled to ion mobility mass spectrometry for characterization of poly(ether ether ketone) polymers, Anal. Chim. Acta, 856, 46-53 (2015). https://doi.org/10.1016/j.aca.2014.12.013
  72. C. Barrere, F. Maire, C. Afonso, and P. Giusti, Atmospheric solid analysis probe-ion mobility mass spectrometry of polypropylene, Anal. Chem., 84, 9349-9354 (2012). https://doi.org/10.1021/ac302109q
  73. K. Wien, TOF-SIMS analysis of polymers, Nucl. Instrum. Methods Phys. Res. B, 131, 38-54 (1997). https://doi.org/10.1016/S0168-583X(97)00147-X
  74. A. C. Crecelius, J. Vitz, and U. S. Schubert, Mass spectrometric imaging of synthetic polymers, Anal. Chim. Acta, 808, 10-17 (2014). https://doi.org/10.1016/j.aca.2013.07.033
  75. D. Rivas, A. Ginebreda, S. Perez, C. Quero, and D. Barcelo, MALDI-TOF MS imaging evidences spatial differences in the degradation of solid polycaprolactone diol in water under aerobic and denitrifying conditions, Sci. Total Environ., 566-567, 27-33 (2016). https://doi.org/10.1016/j.scitotenv.2016.05.090