Browse > Article
http://dx.doi.org/10.14478/ace.2017.1038

Solution-based Synthesis of Two-dimensional Materials for Electrochemical Capacitors  

Choi, Bong Gill (Department of Chemical Engineering, Kangwon National University)
Publication Information
Applied Chemistry for Engineering / v.28, no.3, 2017 , pp. 272-278 More about this Journal
Abstract
Two-dimensional (2D) materials, especially graphene and $MoS_2$ sheets, have gained much attention and shown great promise for the application in supercapacitors. To widely use the 2D materials for supercapacitors, highly efficient, low cost, and environmentally friendly synthetic methods for the preparation of 2D materials should be developed. Here, we will review recently developed solution-based processes for preparing 2D materials for supercapacitors. Chemical exfoliation-reduction, chemical intercalation, and liquid phase exfoliation methods will be introduced. Moreover, the electrochemical characteristics of graphene and $MoS_2$-based electrodes for supercapacitors are summarized. In addition to solution-based processes, other challenges and opportunities are discussed in terms of controlling nanosheet compositions, sizes, and thicknesses.
Keywords
supercapacitor; graphene; $MoS_2$; solution;
Citations & Related Records
연도 인용수 순위
  • Reference
1 F. Wang, S. Xiao, Y. Hou, C. Hu, L. Liu, and Y. Wu, Electrode materials for aqueous asymmetric supercapacitors, RSC Adv., 3, 13059-13084 (2013).   DOI
2 S. Zhang and N. Pan, Supercapacitors performance evaluation, Adv. Energy Mater., 5, 1401401-1401420 (2014).
3 L. Li and Z. Wu, Advances and challenges for flexible energy storage and conversion devices and systems, Energy Environ. Sci., 7, 2101-2122 (2014).   DOI
4 K. Xie and B. Wei, Materials and structures for stretchable energy storage and conversion devices, Adv. Mater., 26, 3592-3617 (2014).   DOI
5 Y. Gogotsi, Energy storage wrapped up, Nature, 509, 568-570 (2014).   DOI
6 J. Y. Q. Wang, T. Wei, and Z. Fan, Recent advances in design and fabrication of electrochemical supercapacitors with high energy densities, Adv. Energy Mater., 4, 1300816-1300859 (2014).   DOI
7 V. Augustyn, P. Simon, and B. Dunn, Pseudocapacitive oxide materials for high-rate electrochemical energy storage, Energy Environ. Sci., 7, 1597-1614 (2014).   DOI
8 X. Zhao, B. M. Sanchez, P. J. Dobson, and P. S. Grant, The role of nanomaterials in redox-based supercapacitors for next generation energy storage devices, Nanoscale, 3, 839-855 (2011).   DOI
9 Y. Yang, G. Ruan, C. Xiang, G. Wang, and J. M. Tour, Flexible three-dimensional nanoporous metal-based energy devices, J. Am. Chem. Soc., 136, 6187-6190 (2014).   DOI
10 B. G. Choi, Y. S. Huh, W. H. Hong, D. Erickson, and H. S. Park, Electroactive nanoparticle directed assembly of functionalized graphene nanosheets into hierarchical structures with hybrid compositions for flexible supercapacitors, Nanoscale, 5, 3976-3981 (2013).   DOI
11 B. G. Choi, M. Yang, W. H. Hong, J. W. Choi, and Y. S. Huh, 3D macroporous graphene frameworks for supercapacitors with high energy and power densities, ACS Nano, 6, 4020-4028 (2012).   DOI
12 T. Zhai, F. Wang, M. Yu, S. Xie, C. Liang, C. Li, F. Xiao, R. Tang, Q. Wu, X. Lu, and Y. Tong, 3D $MnO_2$-graphene composites with large areal capacitance for high-performance asymmetric supercapacitors, Nanoscale, 5, 6790-6796 (2013).   DOI
13 Q. Wang, J. Yan, and Z. Fan, Carbon materials for high volumetric performance supercapacitors: Design, progress, challenges and opportunities, Energy Environ. Sci., 9, 729-762 (2016).   DOI
14 M. Acerce, D. Voiry, and M. Chhowalla, Metallic 1T phase $MoS_2$ nanosheets as supercapacitor electrode materials, Nat. Nanotechnol., 10, 313-317 (2015).   DOI
15 X. Cao, C. Tan, X. Zhang, W. Zhao, and H. Zhang, Solution-processed two-dimensional metal dichalcogenide-based nanomaterials for energy storage and conversion, Adv. Mater., 28, 6167-6196 (2016).   DOI
16 B. Mendoza-Sanchez and Y. Gogotsi, Synthesis of two-dimensional materials for capacitive energy storage, Adv. Mater., 28, 6104-6135 (2016).   DOI
17 G. Zhang, H. Liu, J. Qu, and J. Li, Two-dimensional layered $MoS_2$: rational design, properties and electrochemical applications, Energy Environ. Sci., 9, 1190-1209 (2016).   DOI
18 P. Simon and Y. Gogotsi, Materials for electrochemical capacitors, Nat. Mater., 7, 845-854 (2008).   DOI
19 M. D. Stoller, S. Park, Y. Zhu, J. An, and R. S. Ruoff, Graphene-based ultracapacitors, Nano Lett., 8, 3498-3502 (2008).   DOI
20 J. Kang, V. K. Sangwan, J. D. Wood, and M. C. Hersam, Solution-based processing of monodisperse two-dimensional nanomaterials, Acc. Chem. Res., 50, 943-951 (2017).   DOI
21 Y. Huang, J. Liang, and Y. Chen, An overview of the applications of graphen-based materials in supercapacitors, Small, 4, 1805-1834 (2012).
22 A. Ambrosi, C. K. Chua, A. Bonanni, and M. Pumera, Electrochemistry of graphene and related materials, Chem. Rev., 114, 7150-7188 (2014).   DOI
23 D. Li, M. B. Muller, S. Gilje, R. B. Kaner, and G. G. Wallace, Processable aqueous dispersions of graphene nanosheets, Nat. Nanotechnol., 3, 101-105 (2008).   DOI
24 W. S. Hummers and R. E. Offeman, Preparation of graphitic oxide, J. Am. Chem. Soc., 80, 1339-1339 (1958).   DOI
25 D. Chen, H. Feng, and J. Li, Graphene oxide: preparation, functionalization, and electrochemical applications, Chem. Rev., 112, 6027-6053 (2012).   DOI
26 A. Ambrosi, C. K. Chua, A. Bonanni, and M. Pumera, Electrochemistry of graphene and related materials, Chem. Rev., 114, 7150-7188 (2014).   DOI
27 I. K. Moon, J. Lee, R. S. Ruoff, and H. Lee, Reduced graphene oxide by chemical graphitization, Nat. Commun., 1, 73-79 (2010).
28 S.-Z. Zu and B.-H. Han, Aqueous dispersion of graphene sheets stabilized by pluronic copolymers: formation of supramolecular hydrogel, J. Phys. Chem. C, 113, 13651-13657 (2009).
29 Y. Xu, Z. Lin, X. Huang, Y. Liu, Y. Huang, and X. Duan, Felxible solid-state supercapacitors based on three-dimensional graphene hydrogel films, ACS Nano, 7, 4042-4049 (2013).   DOI
30 Y. Xu, K. Shen, C. Li, and G. Shi, Self-assembled graphene hydrogel via a one-step hydrothermal process, ACS Nano, 7, 4324-4330 (2010).
31 M. Yang, K. G. Lee, S. J. Lee, S. B. Lee, Y.-K. Han, and B. G. Choi, Three-dimensional expanded graphene-metal oxide film via solid state microwave irradiation for aqueous asymmetric supercapacitors, ACS Appl. Mater. Interfaces, 7, 22364-22371 (2015).   DOI
32 Y. Zhu, S. Murali, M. D. Stoller, K. J. Ganesh, W. Cai, P. J. Ferreira, A. Pirkle, R. M. Wallace, K. A. Cychosz, M. Thommes, D. Su, E. A. Stach, and R. S. Ruoff, Carbon-based supercapacitors produced by activation of graphene, Science, 332, 1537-1541 (2011).   DOI
33 M. Yang and B. G. Choi, Rapid one-step synthesis of conductive and porous $MnO_2$/graphene nanocomposite for high performance supercapacitors, J. Electroanal. Chem., 776, 134-138 (2016).   DOI
34 C. Li and G. Shi, Three-dimensional graphene architectures, Nanoscale, 4, 5549-5563 (2012).   DOI
35 X. Cao, Z. Yin, and H. Zhang, Three-dimensional graphene materials: preparation, structures and application in supercapacitors, Energy Environ. Sci., 7, 1850-1865 (2014).   DOI
36 Z. Wen, X. Wang, S. Mao, Z. Bo, H. Kim, S. Cui, G. Lu, X. Feng, and J. Chen, Crumpled nitrogen-doped graphene nanosheets with ultrahigh pore volume for high-performance supercapacitor, Adv. Mater., 24, 5610-5616 (2012).   DOI
37 Z.-S. Wu, K. Parvez, A. Winter, H. Vieker, X. Liu, S. Han, A. Turchanin, X. Feng, and K. Mullen, Layer-by-layer assembled heteroatom-doped graphene films with ultrahigh volumetric capacitance and rate capability for micro-supercapacitors, Adv. Mater., 26, 4552-4558 (2014).   DOI
38 J. Feng, X. Sun, C. Wu, L. Peng, C. Lin, S. Hu, J. Yang, and Y. Xie, Metallic few-layered VS2 ultrathin nanosheets: high two-dimensional conductivity for in-plane supercapacitors, J. Am. Chem. Soc., 133, 17832-17838 (2011).   DOI
39 D. Voiry, A. Mohite, and M. Chhowalla, Phase engineering of transition metal dichalcogenides, Chem. Soc. Rev., 44, 2702-2712 (2015).   DOI
40 Y.-C. Lin, D. O. Dumcenco, Y.-Sh. Huang, and K. Suenaga, Atomic mechanism of the semiconducting-to-metallic phase transition in single-layered $MoS_2$, Nat. Nanotechnol., 9, 391-395 (2014).   DOI
41 V. Nicolosi, M. Chhowalla, M. G. Kanatzidis, M. S. Strano, and J. N. Coleman, Liquid exfoliation of layered materials, Science, 340, 6139-6157 (2013).
42 J. Shen, Y. He, J. Wu, C. Gao, K. Keyshar, X. Zhang, Y. Yang, M. Ye, R. Vajtai, J. Lou, and P. M. Ajayan, Liquid phase exfoliation of two-dimensional materials by directly probing and matching surface tension components, Nano Lett., 15, 5449-5454 (2015).   DOI
43 I. Y. Jeon, Y. R. Shin, G. J. Sohn, H. J. Choi, S. Y. Bae, J. Mahmood, S. M. Jung, J. M. Seo, M. J. Kim, D. W. Chang, L. M. Dai, and J. B. Baek, Edge-carboxylated graphene nanosheets via ball milling, Proc. Natl. Acad. Sci. U. S. A., 109, 5588-5593 (2012).   DOI
44 M. Yang, S.-K. Hwang, J.-M. Jeong, Y. S. Huh, and B. G. Choi, Nitrogen-doped carbon-coated molybdenum disulfide nanosheets for high-performance supercapacitor, Synth. Met., 209, 528-533 (2015).   DOI
45 M. Yang, J.-M. Jeong, Y. S. Huh, and B. G. Choi, High-performance supercapacitor based on three-dimensional $MoS_2$/graphene aerogel composites, Compos. Sci. Technol., 121, 123-128 (2015).   DOI
46 C. Liujun, S. Yang, W. Gao, Z. Liu, Y. Gong, L. Ma, G. Shi, S. Lei, Y. Zhang, S. Zhang, R. Vajtai, and P. M. Ajayan, Direct laser-patterned micro-supercapacitors from paintable $MoS_2$ films, Small, 9, 2905-2910 (2013).   DOI
47 Z.-S. Wu, A. Winter, L. Chen, Y. Sun, A. Turchanin, X. Feng, and K. Mullen, Three-dimensional nitrogen and boron co-doped graphene for high-performance all-solid-state supercapacitors, Adv. Mater., 24, 5130-5135 (2012).   DOI